mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 11:56:44 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			408 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			408 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| 
 | |
| // g++-4.4 bench_gemm.cpp -I .. -O2 -DNDEBUG -lrt -fopenmp && OMP_NUM_THREADS=2
 | |
| // ./a.out
 | |
| // icpc bench_gemm.cpp -I .. -O3 -DNDEBUG -lrt -openmp  && OMP_NUM_THREADS=2
 | |
| // ./a.out
 | |
| 
 | |
| // Compilation options:
 | |
| //
 | |
| // -DSCALAR=std::complex<double>
 | |
| // -DSCALARA=double or -DSCALARB=double
 | |
| // -DHAVE_BLAS
 | |
| // -DDECOUPLED
 | |
| //
 | |
| 
 | |
| #include <bench/BenchTimer.h>
 | |
| #include <Eigen/Core>
 | |
| #include <iostream>
 | |
| 
 | |
| using namespace std;
 | |
| using namespace Eigen;
 | |
| 
 | |
| #ifndef SCALAR
 | |
| // #define SCALAR std::complex<float>
 | |
| #define SCALAR float
 | |
| #endif
 | |
| 
 | |
| #ifndef SCALARA
 | |
| #define SCALARA SCALAR
 | |
| #endif
 | |
| 
 | |
| #ifndef SCALARB
 | |
| #define SCALARB SCALAR
 | |
| #endif
 | |
| 
 | |
| #ifdef ROWMAJ_A
 | |
| const int opt_A = RowMajor;
 | |
| #else
 | |
| const int opt_A = ColMajor;
 | |
| #endif
 | |
| 
 | |
| #ifdef ROWMAJ_B
 | |
| const int opt_B = RowMajor;
 | |
| #else
 | |
| const int opt_B = ColMajor;
 | |
| #endif
 | |
| 
 | |
| typedef SCALAR Scalar;
 | |
| typedef NumTraits<Scalar>::Real RealScalar;
 | |
| typedef Matrix<SCALARA, Dynamic, Dynamic, opt_A> A;
 | |
| typedef Matrix<SCALARB, Dynamic, Dynamic, opt_B> B;
 | |
| typedef Matrix<Scalar, Dynamic, Dynamic> C;
 | |
| typedef Matrix<RealScalar, Dynamic, Dynamic> M;
 | |
| 
 | |
| #ifdef HAVE_BLAS
 | |
| 
 | |
| extern "C" {
 | |
| #include <Eigen/src/misc/blas.h>
 | |
| }
 | |
| 
 | |
| static float fone = 1;
 | |
| static float fzero = 0;
 | |
| static double done = 1;
 | |
| static double szero = 0;
 | |
| static std::complex<float> cfone = 1;
 | |
| static std::complex<float> cfzero = 0;
 | |
| static std::complex<double> cdone = 1;
 | |
| static std::complex<double> cdzero = 0;
 | |
| static char notrans = 'N';
 | |
| static char trans = 'T';
 | |
| static char nonunit = 'N';
 | |
| static char lower = 'L';
 | |
| static char right = 'R';
 | |
| static int intone = 1;
 | |
| 
 | |
| #ifdef ROWMAJ_A
 | |
| const char transA = trans;
 | |
| #else
 | |
| const char transA = notrans;
 | |
| #endif
 | |
| 
 | |
| #ifdef ROWMAJ_B
 | |
| const char transB = trans;
 | |
| #else
 | |
| const char transB = notrans;
 | |
| #endif
 | |
| 
 | |
| template <typename A, typename B>
 | |
| void blas_gemm(const A& a, const B& b, MatrixXf& c) {
 | |
|   int M = c.rows();
 | |
|   int N = c.cols();
 | |
|   int K = a.cols();
 | |
|   int lda = a.outerStride();
 | |
|   int ldb = b.outerStride();
 | |
|   int ldc = c.rows();
 | |
| 
 | |
|   sgemm_(&transA, &transB, &M, &N, &K, &fone, const_cast<float*>(a.data()),
 | |
|          &lda, const_cast<float*>(b.data()), &ldb, &fone, c.data(), &ldc);
 | |
| }
 | |
| 
 | |
| template <typename A, typename B>
 | |
| void blas_gemm(const A& a, const B& b, MatrixXd& c) {
 | |
|   int M = c.rows();
 | |
|   int N = c.cols();
 | |
|   int K = a.cols();
 | |
|   int lda = a.outerStride();
 | |
|   int ldb = b.outerStride();
 | |
|   int ldc = c.rows();
 | |
| 
 | |
|   dgemm_(&transA, &transB, &M, &N, &K, &done, const_cast<double*>(a.data()),
 | |
|          &lda, const_cast<double*>(b.data()), &ldb, &done, c.data(), &ldc);
 | |
| }
 | |
| 
 | |
| template <typename A, typename B>
 | |
| void blas_gemm(const A& a, const B& b, MatrixXcf& c) {
 | |
|   int M = c.rows();
 | |
|   int N = c.cols();
 | |
|   int K = a.cols();
 | |
|   int lda = a.outerStride();
 | |
|   int ldb = b.outerStride();
 | |
|   int ldc = c.rows();
 | |
| 
 | |
|   cgemm_(&transA, &transB, &M, &N, &K, (float*)&cfone,
 | |
|          const_cast<float*>((const float*)a.data()), &lda,
 | |
|          const_cast<float*>((const float*)b.data()), &ldb, (float*)&cfone,
 | |
|          (float*)c.data(), &ldc);
 | |
| }
 | |
| 
 | |
| template <typename A, typename B>
 | |
| void blas_gemm(const A& a, const B& b, MatrixXcd& c) {
 | |
|   int M = c.rows();
 | |
|   int N = c.cols();
 | |
|   int K = a.cols();
 | |
|   int lda = a.outerStride();
 | |
|   int ldb = b.outerStride();
 | |
|   int ldc = c.rows();
 | |
| 
 | |
|   zgemm_(&transA, &transB, &M, &N, &K, (double*)&cdone,
 | |
|          const_cast<double*>((const double*)a.data()), &lda,
 | |
|          const_cast<double*>((const double*)b.data()), &ldb, (double*)&cdone,
 | |
|          (double*)c.data(), &ldc);
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| void matlab_cplx_cplx(const M& ar, const M& ai, const M& br, const M& bi, M& cr,
 | |
|                       M& ci) {
 | |
|   cr.noalias() += ar * br;
 | |
|   cr.noalias() -= ai * bi;
 | |
|   ci.noalias() += ar * bi;
 | |
|   ci.noalias() += ai * br;
 | |
|   // [cr ci] += [ar ai] * br + [-ai ar] * bi
 | |
| }
 | |
| 
 | |
| void matlab_real_cplx(const M& a, const M& br, const M& bi, M& cr, M& ci) {
 | |
|   cr.noalias() += a * br;
 | |
|   ci.noalias() += a * bi;
 | |
| }
 | |
| 
 | |
| void matlab_cplx_real(const M& ar, const M& ai, const M& b, M& cr, M& ci) {
 | |
|   cr.noalias() += ar * b;
 | |
|   ci.noalias() += ai * b;
 | |
| }
 | |
| 
 | |
| template <typename A, typename B, typename C>
 | |
| EIGEN_DONT_INLINE void gemm(const A& a, const B& b, C& c) {
 | |
|   c.noalias() += a * b;
 | |
| }
 | |
| 
 | |
| int main(int argc, char** argv) {
 | |
|   std::ptrdiff_t l1 = internal::queryL1CacheSize();
 | |
|   std::ptrdiff_t l2 = internal::queryTopLevelCacheSize();
 | |
|   std::cout << "L1 cache size     = " << (l1 > 0 ? l1 / 1024 : -1) << " KB\n";
 | |
|   std::cout << "L2/L3 cache size  = " << (l2 > 0 ? l2 / 1024 : -1) << " KB\n";
 | |
|   typedef internal::gebp_traits<Scalar, Scalar> Traits;
 | |
|   std::cout << "Register blocking = " << Traits::mr << " x " << Traits::nr
 | |
|             << "\n";
 | |
| 
 | |
|   int rep = 1;    // number of repetitions per try
 | |
|   int tries = 2;  // number of tries, we keep the best
 | |
| 
 | |
|   int s = 2048;
 | |
|   int m = s;
 | |
|   int n = s;
 | |
|   int p = s;
 | |
|   int cache_size1 = -1, cache_size2 = l2, cache_size3 = 0;
 | |
| 
 | |
|   bool need_help = false;
 | |
|   for (int i = 1; i < argc;) {
 | |
|     if (argv[i][0] == '-') {
 | |
|       if (argv[i][1] == 's') {
 | |
|         ++i;
 | |
|         s = atoi(argv[i++]);
 | |
|         m = n = p = s;
 | |
|         if (argv[i][0] != '-') {
 | |
|           n = atoi(argv[i++]);
 | |
|           p = atoi(argv[i++]);
 | |
|         }
 | |
|       } else if (argv[i][1] == 'c') {
 | |
|         ++i;
 | |
|         cache_size1 = atoi(argv[i++]);
 | |
|         if (argv[i][0] != '-') {
 | |
|           cache_size2 = atoi(argv[i++]);
 | |
|           if (argv[i][0] != '-') cache_size3 = atoi(argv[i++]);
 | |
|         }
 | |
|       } else if (argv[i][1] == 't') {
 | |
|         tries = atoi(argv[++i]);
 | |
|         ++i;
 | |
|       } else if (argv[i][1] == 'p') {
 | |
|         ++i;
 | |
|         rep = atoi(argv[i++]);
 | |
|       }
 | |
|     } else {
 | |
|       need_help = true;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (need_help) {
 | |
|     std::cout << argv[0] << " -s <matrix sizes> -c <cache sizes> -t <nb tries> "
 | |
|                             "-p <nb repeats>\n";
 | |
|     std::cout << "   <matrix sizes> : size\n";
 | |
|     std::cout << "   <matrix sizes> : rows columns depth\n";
 | |
|     return 1;
 | |
|   }
 | |
| 
 | |
| #if EIGEN_VERSION_AT_LEAST(3, 2, 90)
 | |
|   if (cache_size1 > 0) setCpuCacheSizes(cache_size1, cache_size2, cache_size3);
 | |
| #endif
 | |
| 
 | |
|   A a(m, p);
 | |
|   a.setRandom();
 | |
|   B b(p, n);
 | |
|   b.setRandom();
 | |
|   C c(m, n);
 | |
|   c.setOnes();
 | |
|   C rc = c;
 | |
| 
 | |
|   std::cout << "Matrix sizes = " << m << "x" << p << " * " << p << "x" << n
 | |
|             << "\n";
 | |
|   std::ptrdiff_t mc(m), nc(n), kc(p);
 | |
|   internal::computeProductBlockingSizes<Scalar, Scalar>(kc, mc, nc);
 | |
|   std::cout << "blocking size (mc x kc) = " << mc << " x " << kc << " x " << nc
 | |
|             << "\n";
 | |
| 
 | |
|   C r = c;
 | |
| 
 | |
| // check the parallel product is correct
 | |
| #if defined EIGEN_HAS_OPENMP
 | |
|   Eigen::initParallel();
 | |
|   int procs = omp_get_max_threads();
 | |
|   if (procs > 1) {
 | |
| #ifdef HAVE_BLAS
 | |
|     blas_gemm(a, b, r);
 | |
| #else
 | |
|     omp_set_num_threads(1);
 | |
|     r.noalias() += a * b;
 | |
|     omp_set_num_threads(procs);
 | |
| #endif
 | |
|     c.noalias() += a * b;
 | |
|     if (!r.isApprox(c))
 | |
|       std::cerr << "Warning, your parallel product is crap!\n\n";
 | |
|   }
 | |
| #elif defined HAVE_BLAS
 | |
|   blas_gemm(a, b, r);
 | |
|   c.noalias() += a * b;
 | |
|   if (!r.isApprox(c)) {
 | |
|     std::cout << (r - c).norm() / r.norm() << "\n";
 | |
|     std::cerr << "Warning, your product is crap!\n\n";
 | |
|   }
 | |
| #else
 | |
|   if (1. * m * n * p < 2000. * 2000 * 2000) {
 | |
|     gemm(a, b, c);
 | |
|     r.noalias() += a.cast<Scalar>().lazyProduct(b.cast<Scalar>());
 | |
|     if (!r.isApprox(c)) {
 | |
|       std::cout << (r - c).norm() / r.norm() << "\n";
 | |
|       std::cerr << "Warning, your product is crap!\n\n";
 | |
|     }
 | |
|   }
 | |
| #endif
 | |
| 
 | |
| #ifdef HAVE_BLAS
 | |
|   BenchTimer tblas;
 | |
|   c = rc;
 | |
|   BENCH(tblas, tries, rep, blas_gemm(a, b, c));
 | |
|   std::cout << "blas  cpu         " << tblas.best(CPU_TIMER) / rep << "s  \t"
 | |
|             << (double(m) * n * p * rep * 2 / tblas.best(CPU_TIMER)) * 1e-9
 | |
|             << " GFLOPS \t(" << tblas.total(CPU_TIMER) << "s)\n";
 | |
|   std::cout << "blas  real        " << tblas.best(REAL_TIMER) / rep << "s  \t"
 | |
|             << (double(m) * n * p * rep * 2 / tblas.best(REAL_TIMER)) * 1e-9
 | |
|             << " GFLOPS \t(" << tblas.total(REAL_TIMER) << "s)\n";
 | |
| #endif
 | |
| 
 | |
|   // warm start
 | |
|   if (b.norm() + a.norm() == 123.554) std::cout << "\n";
 | |
| 
 | |
|   BenchTimer tmt;
 | |
|   c = rc;
 | |
|   BENCH(tmt, tries, rep, gemm(a, b, c));
 | |
|   std::cout << "eigen cpu         " << tmt.best(CPU_TIMER) / rep << "s  \t"
 | |
|             << (double(m) * n * p * rep * 2 / tmt.best(CPU_TIMER)) * 1e-9
 | |
|             << " GFLOPS \t(" << tmt.total(CPU_TIMER) << "s)\n";
 | |
|   std::cout << "eigen real        " << tmt.best(REAL_TIMER) / rep << "s  \t"
 | |
|             << (double(m) * n * p * rep * 2 / tmt.best(REAL_TIMER)) * 1e-9
 | |
|             << " GFLOPS \t(" << tmt.total(REAL_TIMER) << "s)\n";
 | |
| 
 | |
| #ifdef EIGEN_HAS_OPENMP
 | |
|   if (procs > 1) {
 | |
|     BenchTimer tmono;
 | |
|     omp_set_num_threads(1);
 | |
|     Eigen::setNbThreads(1);
 | |
|     c = rc;
 | |
|     BENCH(tmono, tries, rep, gemm(a, b, c));
 | |
|     std::cout << "eigen mono cpu    " << tmono.best(CPU_TIMER) / rep << "s  \t"
 | |
|               << (double(m) * n * p * rep * 2 / tmono.best(CPU_TIMER)) * 1e-9
 | |
|               << " GFLOPS \t(" << tmono.total(CPU_TIMER) << "s)\n";
 | |
|     std::cout << "eigen mono real   " << tmono.best(REAL_TIMER) / rep << "s  \t"
 | |
|               << (double(m) * n * p * rep * 2 / tmono.best(REAL_TIMER)) * 1e-9
 | |
|               << " GFLOPS \t(" << tmono.total(REAL_TIMER) << "s)\n";
 | |
|     std::cout << "mt speed up x" << tmono.best(CPU_TIMER) / tmt.best(REAL_TIMER)
 | |
|               << " => "
 | |
|               << (100.0 * tmono.best(CPU_TIMER) / tmt.best(REAL_TIMER)) / procs
 | |
|               << "%\n";
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   if (1. * m * n * p < 30 * 30 * 30) {
 | |
|     BenchTimer tmt;
 | |
|     c = rc;
 | |
|     BENCH(tmt, tries, rep, c.noalias() += a.lazyProduct(b));
 | |
|     std::cout << "lazy cpu         " << tmt.best(CPU_TIMER) / rep << "s  \t"
 | |
|               << (double(m) * n * p * rep * 2 / tmt.best(CPU_TIMER)) * 1e-9
 | |
|               << " GFLOPS \t(" << tmt.total(CPU_TIMER) << "s)\n";
 | |
|     std::cout << "lazy real        " << tmt.best(REAL_TIMER) / rep << "s  \t"
 | |
|               << (double(m) * n * p * rep * 2 / tmt.best(REAL_TIMER)) * 1e-9
 | |
|               << " GFLOPS \t(" << tmt.total(REAL_TIMER) << "s)\n";
 | |
|   }
 | |
| 
 | |
| #ifdef DECOUPLED
 | |
|   if ((NumTraits<A::Scalar>::IsComplex) && (NumTraits<B::Scalar>::IsComplex)) {
 | |
|     M ar(m, p);
 | |
|     ar.setRandom();
 | |
|     M ai(m, p);
 | |
|     ai.setRandom();
 | |
|     M br(p, n);
 | |
|     br.setRandom();
 | |
|     M bi(p, n);
 | |
|     bi.setRandom();
 | |
|     M cr(m, n);
 | |
|     cr.setRandom();
 | |
|     M ci(m, n);
 | |
|     ci.setRandom();
 | |
| 
 | |
|     BenchTimer t;
 | |
|     BENCH(t, tries, rep, matlab_cplx_cplx(ar, ai, br, bi, cr, ci));
 | |
|     std::cout << "\"matlab\" cpu    " << t.best(CPU_TIMER) / rep << "s  \t"
 | |
|               << (double(m) * n * p * rep * 2 / t.best(CPU_TIMER)) * 1e-9
 | |
|               << " GFLOPS \t(" << t.total(CPU_TIMER) << "s)\n";
 | |
|     std::cout << "\"matlab\" real   " << t.best(REAL_TIMER) / rep << "s  \t"
 | |
|               << (double(m) * n * p * rep * 2 / t.best(REAL_TIMER)) * 1e-9
 | |
|               << " GFLOPS \t(" << t.total(REAL_TIMER) << "s)\n";
 | |
|   }
 | |
|   if ((!NumTraits<A::Scalar>::IsComplex) && (NumTraits<B::Scalar>::IsComplex)) {
 | |
|     M a(m, p);
 | |
|     a.setRandom();
 | |
|     M br(p, n);
 | |
|     br.setRandom();
 | |
|     M bi(p, n);
 | |
|     bi.setRandom();
 | |
|     M cr(m, n);
 | |
|     cr.setRandom();
 | |
|     M ci(m, n);
 | |
|     ci.setRandom();
 | |
| 
 | |
|     BenchTimer t;
 | |
|     BENCH(t, tries, rep, matlab_real_cplx(a, br, bi, cr, ci));
 | |
|     std::cout << "\"matlab\" cpu    " << t.best(CPU_TIMER) / rep << "s  \t"
 | |
|               << (double(m) * n * p * rep * 2 / t.best(CPU_TIMER)) * 1e-9
 | |
|               << " GFLOPS \t(" << t.total(CPU_TIMER) << "s)\n";
 | |
|     std::cout << "\"matlab\" real   " << t.best(REAL_TIMER) / rep << "s  \t"
 | |
|               << (double(m) * n * p * rep * 2 / t.best(REAL_TIMER)) * 1e-9
 | |
|               << " GFLOPS \t(" << t.total(REAL_TIMER) << "s)\n";
 | |
|   }
 | |
|   if ((NumTraits<A::Scalar>::IsComplex) && (!NumTraits<B::Scalar>::IsComplex)) {
 | |
|     M ar(m, p);
 | |
|     ar.setRandom();
 | |
|     M ai(m, p);
 | |
|     ai.setRandom();
 | |
|     M b(p, n);
 | |
|     b.setRandom();
 | |
|     M cr(m, n);
 | |
|     cr.setRandom();
 | |
|     M ci(m, n);
 | |
|     ci.setRandom();
 | |
| 
 | |
|     BenchTimer t;
 | |
|     BENCH(t, tries, rep, matlab_cplx_real(ar, ai, b, cr, ci));
 | |
|     std::cout << "\"matlab\" cpu    " << t.best(CPU_TIMER) / rep << "s  \t"
 | |
|               << (double(m) * n * p * rep * 2 / t.best(CPU_TIMER)) * 1e-9
 | |
|               << " GFLOPS \t(" << t.total(CPU_TIMER) << "s)\n";
 | |
|     std::cout << "\"matlab\" real   " << t.best(REAL_TIMER) / rep << "s  \t"
 | |
|               << (double(m) * n * p * rep * 2 / t.best(REAL_TIMER)) * 1e-9
 | |
|               << " GFLOPS \t(" << t.total(REAL_TIMER) << "s)\n";
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   return 0;
 | |
| }
 | 
