mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-11-01 04:12:58 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			201 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			201 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| 
 | |
| // g++ -DNDEBUG -O3 -I.. benchEigenSolver.cpp  -o benchEigenSolver &&
 | |
| // ./benchEigenSolver
 | |
| // options:
 | |
| //  -DBENCH_GMM
 | |
| //  -DBENCH_GSL -lgsl /usr/lib/libcblas.so.3
 | |
| //  -DEIGEN_DONT_VECTORIZE
 | |
| //  -msse2
 | |
| //  -DREPEAT=100
 | |
| //  -DTRIES=10
 | |
| //  -DSCALAR=double
 | |
| 
 | |
| #include <iostream>
 | |
| 
 | |
| #include <bench/BenchUtil.h>
 | |
| #include <Eigen/Core>
 | |
| #include <Eigen/QR>
 | |
| using namespace Eigen;
 | |
| 
 | |
| #ifndef REPEAT
 | |
| #define REPEAT 1000
 | |
| #endif
 | |
| 
 | |
| #ifndef TRIES
 | |
| #define TRIES 4
 | |
| #endif
 | |
| 
 | |
| #ifndef SCALAR
 | |
| #define SCALAR float
 | |
| #endif
 | |
| 
 | |
| typedef SCALAR Scalar;
 | |
| 
 | |
| template <typename MatrixType>
 | |
| __attribute__((noinline)) void benchEigenSolver(const MatrixType& m) {
 | |
|   int rows = m.rows();
 | |
|   int cols = m.cols();
 | |
| 
 | |
|   int stdRepeats =
 | |
|       std::max(1, int((REPEAT * 1000) / (rows * rows * sqrt(rows))));
 | |
|   int saRepeats = stdRepeats * 4;
 | |
| 
 | |
|   typedef typename MatrixType::Scalar Scalar;
 | |
|   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime,
 | |
|                  MatrixType::RowsAtCompileTime>
 | |
|       SquareMatrixType;
 | |
| 
 | |
|   MatrixType a = MatrixType::Random(rows, cols);
 | |
|   SquareMatrixType covMat = a * a.adjoint();
 | |
| 
 | |
|   BenchTimer timerSa, timerStd;
 | |
| 
 | |
|   Scalar acc = 0;
 | |
|   int r = internal::random<int>(0, covMat.rows() - 1);
 | |
|   int c = internal::random<int>(0, covMat.cols() - 1);
 | |
|   {
 | |
|     SelfAdjointEigenSolver<SquareMatrixType> ei(covMat);
 | |
|     for (int t = 0; t < TRIES; ++t) {
 | |
|       timerSa.start();
 | |
|       for (int k = 0; k < saRepeats; ++k) {
 | |
|         ei.compute(covMat);
 | |
|         acc += ei.eigenvectors().coeff(r, c);
 | |
|       }
 | |
|       timerSa.stop();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     EigenSolver<SquareMatrixType> ei(covMat);
 | |
|     for (int t = 0; t < TRIES; ++t) {
 | |
|       timerStd.start();
 | |
|       for (int k = 0; k < stdRepeats; ++k) {
 | |
|         ei.compute(covMat);
 | |
|         acc += ei.eigenvectors().coeff(r, c);
 | |
|       }
 | |
|       timerStd.stop();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (MatrixType::RowsAtCompileTime == Dynamic)
 | |
|     std::cout << "dyn   ";
 | |
|   else
 | |
|     std::cout << "fixed ";
 | |
|   std::cout << covMat.rows() << " \t" << timerSa.value() * REPEAT / saRepeats
 | |
|             << "s \t" << timerStd.value() * REPEAT / stdRepeats << "s";
 | |
| 
 | |
| #ifdef BENCH_GMM
 | |
|   if (MatrixType::RowsAtCompileTime == Dynamic) {
 | |
|     timerSa.reset();
 | |
|     timerStd.reset();
 | |
| 
 | |
|     gmm::dense_matrix<Scalar> gmmCovMat(covMat.rows(), covMat.cols());
 | |
|     gmm::dense_matrix<Scalar> eigvect(covMat.rows(), covMat.cols());
 | |
|     std::vector<Scalar> eigval(covMat.rows());
 | |
|     eiToGmm(covMat, gmmCovMat);
 | |
|     for (int t = 0; t < TRIES; ++t) {
 | |
|       timerSa.start();
 | |
|       for (int k = 0; k < saRepeats; ++k) {
 | |
|         gmm::symmetric_qr_algorithm(gmmCovMat, eigval, eigvect);
 | |
|         acc += eigvect(r, c);
 | |
|       }
 | |
|       timerSa.stop();
 | |
|     }
 | |
|     // the non-selfadjoint solver does not compute the eigen vectors
 | |
|     //     for (int t=0; t<TRIES; ++t)
 | |
|     //     {
 | |
|     //       timerStd.start();
 | |
|     //       for (int k=0; k<stdRepeats; ++k)
 | |
|     //       {
 | |
|     //         gmm::implicit_qr_algorithm(gmmCovMat, eigval, eigvect);
 | |
|     //         acc += eigvect(r,c);
 | |
|     //       }
 | |
|     //       timerStd.stop();
 | |
|     //     }
 | |
| 
 | |
|     std::cout << " | \t" << timerSa.value() * REPEAT / saRepeats << "s"
 | |
|               << /*timerStd.value() * REPEAT / stdRepeats << "s"*/ "   na   ";
 | |
|   }
 | |
| #endif
 | |
| 
 | |
| #ifdef BENCH_GSL
 | |
|   if (MatrixType::RowsAtCompileTime == Dynamic) {
 | |
|     timerSa.reset();
 | |
|     timerStd.reset();
 | |
| 
 | |
|     gsl_matrix* gslCovMat = gsl_matrix_alloc(covMat.rows(), covMat.cols());
 | |
|     gsl_matrix* gslCopy = gsl_matrix_alloc(covMat.rows(), covMat.cols());
 | |
|     gsl_matrix* eigvect = gsl_matrix_alloc(covMat.rows(), covMat.cols());
 | |
|     gsl_vector* eigval = gsl_vector_alloc(covMat.rows());
 | |
|     gsl_eigen_symmv_workspace* eisymm = gsl_eigen_symmv_alloc(covMat.rows());
 | |
| 
 | |
|     gsl_matrix_complex* eigvectz =
 | |
|         gsl_matrix_complex_alloc(covMat.rows(), covMat.cols());
 | |
|     gsl_vector_complex* eigvalz = gsl_vector_complex_alloc(covMat.rows());
 | |
|     gsl_eigen_nonsymmv_workspace* einonsymm =
 | |
|         gsl_eigen_nonsymmv_alloc(covMat.rows());
 | |
| 
 | |
|     eiToGsl(covMat, &gslCovMat);
 | |
|     for (int t = 0; t < TRIES; ++t) {
 | |
|       timerSa.start();
 | |
|       for (int k = 0; k < saRepeats; ++k) {
 | |
|         gsl_matrix_memcpy(gslCopy, gslCovMat);
 | |
|         gsl_eigen_symmv(gslCopy, eigval, eigvect, eisymm);
 | |
|         acc += gsl_matrix_get(eigvect, r, c);
 | |
|       }
 | |
|       timerSa.stop();
 | |
|     }
 | |
|     for (int t = 0; t < TRIES; ++t) {
 | |
|       timerStd.start();
 | |
|       for (int k = 0; k < stdRepeats; ++k) {
 | |
|         gsl_matrix_memcpy(gslCopy, gslCovMat);
 | |
|         gsl_eigen_nonsymmv(gslCopy, eigvalz, eigvectz, einonsymm);
 | |
|         acc += GSL_REAL(gsl_matrix_complex_get(eigvectz, r, c));
 | |
|       }
 | |
|       timerStd.stop();
 | |
|     }
 | |
| 
 | |
|     std::cout << " | \t" << timerSa.value() * REPEAT / saRepeats << "s \t"
 | |
|               << timerStd.value() * REPEAT / stdRepeats << "s";
 | |
| 
 | |
|     gsl_matrix_free(gslCovMat);
 | |
|     gsl_vector_free(gslCopy);
 | |
|     gsl_matrix_free(eigvect);
 | |
|     gsl_vector_free(eigval);
 | |
|     gsl_matrix_complex_free(eigvectz);
 | |
|     gsl_vector_complex_free(eigvalz);
 | |
|     gsl_eigen_symmv_free(eisymm);
 | |
|     gsl_eigen_nonsymmv_free(einonsymm);
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   std::cout << "\n";
 | |
| 
 | |
|   // make sure the compiler does not optimize too much
 | |
|   if (acc == 123) std::cout << acc;
 | |
| }
 | |
| 
 | |
| int main(int argc, char* argv[]) {
 | |
|   const int dynsizes[] = {4, 6, 8, 12, 16, 24, 32, 64, 128, 256, 512, 0};
 | |
|   std::cout << "size            selfadjoint       generic";
 | |
| #ifdef BENCH_GMM
 | |
|   std::cout << "        GMM++          ";
 | |
| #endif
 | |
| #ifdef BENCH_GSL
 | |
|   std::cout << "       GSL (double + ATLAS)  ";
 | |
| #endif
 | |
|   std::cout << "\n";
 | |
|   for (uint i = 0; dynsizes[i] > 0; ++i)
 | |
|     benchEigenSolver(
 | |
|         Matrix<Scalar, Dynamic, Dynamic>(dynsizes[i], dynsizes[i]));
 | |
| 
 | |
|   benchEigenSolver(Matrix<Scalar, 2, 2>());
 | |
|   benchEigenSolver(Matrix<Scalar, 3, 3>());
 | |
|   benchEigenSolver(Matrix<Scalar, 4, 4>());
 | |
|   benchEigenSolver(Matrix<Scalar, 6, 6>());
 | |
|   benchEigenSolver(Matrix<Scalar, 8, 8>());
 | |
|   benchEigenSolver(Matrix<Scalar, 12, 12>());
 | |
|   benchEigenSolver(Matrix<Scalar, 16, 16>());
 | |
|   return 0;
 | |
| }
 | 
