mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 20:02:53 +08:00 
			
		
		
		
	 312e1b097d
			
		
	
	312e1b097d
	
	
	
		
			
			* Refactor PaddleSeg with preprocessor && postprocessor * Fix bugs * Delete redundancy code * Modify by comments * Refactor according to comments * Add batch evaluation * Add single test script * Add ppliteseg single test script && fix eval(raise) error * fix bug * Fix evaluation segmentation.py batch predict * Fix segmentation evaluation bug * Fix evaluation segmentation bugs Co-authored-by: Jason <jiangjiajun@baidu.com>
		
			
				
	
	
		
			91 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			91 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #pragma once
 | |
| #include "fastdeploy/fastdeploy_model.h"
 | |
| #include "fastdeploy/vision/segmentation/ppseg/preprocessor.h"
 | |
| #include "fastdeploy/vision/segmentation/ppseg/postprocessor.h"
 | |
| 
 | |
| namespace fastdeploy {
 | |
| namespace vision {
 | |
| /** \brief All segmentation model APIs are defined inside this namespace
 | |
|  *
 | |
|  */
 | |
| namespace segmentation {
 | |
| 
 | |
| /*! @brief PaddleSeg serials model object used when to load a PaddleSeg model exported by PaddleSeg repository
 | |
|  */
 | |
| class FASTDEPLOY_DECL PaddleSegModel : public FastDeployModel {
 | |
|  public:
 | |
|   /** \brief Set path of model file and configuration file, and the configuration of runtime
 | |
|    *
 | |
|    * \param[in] model_file Path of model file, e.g unet/model.pdmodel
 | |
|    * \param[in] params_file Path of parameter file, e.g unet/model.pdiparams, if the model format is ONNX, this parameter will be ignored
 | |
|    * \param[in] config_file Path of configuration file for deployment, e.g unet/deploy.yml
 | |
|    * \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in `valid_cpu_backends`
 | |
|    * \param[in] model_format Model format of the loaded model, default is Paddle format
 | |
|    */
 | |
|   PaddleSegModel(const std::string& model_file, const std::string& params_file,
 | |
|                  const std::string& config_file,
 | |
|                  const RuntimeOption& custom_option = RuntimeOption(),
 | |
|                  const ModelFormat& model_format = ModelFormat::PADDLE);
 | |
| 
 | |
|   /// Get model's name
 | |
|   std::string ModelName() const { return "PaddleSeg"; }
 | |
| 
 | |
|   /** \brief DEPRECATED Predict the segmentation result for an input image
 | |
|    *
 | |
|    * \param[in] im The input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format
 | |
|    * \param[in] result The output segmentation result will be writen to this structure
 | |
|    * \return true if the segmentation prediction successed, otherwise false
 | |
|    */
 | |
|   virtual bool Predict(cv::Mat* im, SegmentationResult* result);
 | |
| 
 | |
|   /** \brief Predict the segmentation result for an input image
 | |
|    *
 | |
|    * \param[in] im The input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format
 | |
|    * \param[in] result The output segmentation result will be writen to this structure
 | |
|    * \return true if the segmentation prediction successed, otherwise false
 | |
|    */
 | |
|   virtual bool Predict(const cv::Mat& im, SegmentationResult* result);
 | |
| 
 | |
|   /** \brief Predict the segmentation results for a batch of input images
 | |
|    *
 | |
|    * \param[in] imgs, The input image list, each element comes from cv::imread()
 | |
|    * \param[in] results The output segmentation result list
 | |
|    * \return true if the prediction successed, otherwise false
 | |
|    */
 | |
|   virtual bool BatchPredict(const std::vector<cv::Mat>& imgs,
 | |
|                             std::vector<SegmentationResult>* results);
 | |
| 
 | |
|   /// Get preprocessor reference of PaddleSegModel
 | |
|   virtual PaddleSegPreprocessor& GetPreprocessor() {
 | |
|     return preprocessor_;
 | |
|   }
 | |
| 
 | |
|   /// Get postprocessor reference of PaddleSegModel
 | |
|   virtual PaddleSegPostprocessor& GetPostprocessor() {
 | |
|     return postprocessor_;
 | |
|   }
 | |
| 
 | |
|  protected:
 | |
|   bool Initialize();
 | |
|   PaddleSegPreprocessor preprocessor_;
 | |
|   PaddleSegPostprocessor postprocessor_;
 | |
| };
 | |
| 
 | |
| }  // namespace segmentation
 | |
| }  // namespace vision
 | |
| }  // namespace fastdeploy
 |