mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-11-01 04:12:58 +08:00 
			
		
		
		
	 e5c955dd3e
			
		
	
	e5c955dd3e
	
	
	
		
			
			* yolov5 use external stream * yolov5lite/v6/v7/v7e2etrt: optimize output tensor and cuda stream * avoid reallocating output tensors * add input output tensors to FastDeployModel * add cuda.cmake * rename to reused_input/output_tensors * eliminate cmake cuda arch error * use swap to release input and output tensors Co-authored-by: Jason <jiangjiajun@baidu.com>
		
			
				
	
	
		
			154 lines
		
	
	
		
			6.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			154 lines
		
	
	
		
			6.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.  //NOLINT
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #pragma once
 | |
| #include "fastdeploy/fastdeploy_model.h"
 | |
| #include "fastdeploy/vision/common/processors/transform.h"
 | |
| #include "fastdeploy/vision/common/result.h"
 | |
| 
 | |
| namespace fastdeploy {
 | |
| namespace vision {
 | |
| namespace detection {
 | |
| /*! @brief YOLOv5Lite model object used when to load a YOLOv5Lite model exported by YOLOv5Lite.
 | |
|  */
 | |
| class FASTDEPLOY_DECL YOLOv5Lite : public FastDeployModel {
 | |
|  public:
 | |
|   /** \brief  Set path of model file and the configuration of runtime.
 | |
|    *
 | |
|    * \param[in] model_file Path of model file, e.g ./yolov5lite.onnx
 | |
|    * \param[in] params_file Path of parameter file, e.g ppyoloe/model.pdiparams, if the model format is ONNX, this parameter will be ignored
 | |
|    * \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in "valid_cpu_backends"
 | |
|    * \param[in] model_format Model format of the loaded model, default is ONNX format
 | |
|    */
 | |
|   YOLOv5Lite(const std::string& model_file, const std::string& params_file = "",
 | |
|              const RuntimeOption& custom_option = RuntimeOption(),
 | |
|              const ModelFormat& model_format = ModelFormat::ONNX);
 | |
| 
 | |
|   ~YOLOv5Lite();
 | |
| 
 | |
|   virtual std::string ModelName() const { return "YOLOv5-Lite"; }
 | |
|   /** \brief Predict the detection result for an input image
 | |
|    *
 | |
|    * \param[in] im The input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format
 | |
|    * \param[in] result The output detection result will be writen to this structure
 | |
|    * \param[in] conf_threshold confidence threashold for postprocessing, default is 0.45
 | |
|    * \param[in] nms_iou_threshold iou threashold for NMS, default is 0.25
 | |
|    * \return true if the prediction successed, otherwise false
 | |
|    */
 | |
|   virtual bool Predict(cv::Mat* im, DetectionResult* result,
 | |
|                        float conf_threshold = 0.45,
 | |
|                        float nms_iou_threshold = 0.25);
 | |
| 
 | |
| 
 | |
|   void UseCudaPreprocessing(int max_img_size = 3840 * 2160);
 | |
| 
 | |
|   /*! @brief
 | |
|   Argument for image preprocessing step, tuple of (width, height), decide the target size after resize, size = {640, 640}
 | |
|   */
 | |
|   std::vector<int> size;
 | |
|   // padding value, size should be the same as channels
 | |
| 
 | |
|   std::vector<float> padding_value;
 | |
|   // only pad to the minimum rectange which height and width is times of stride
 | |
|   bool is_mini_pad;
 | |
|   // while is_mini_pad = false and is_no_pad = true,
 | |
|   // will resize the image to the set size
 | |
|   bool is_no_pad;
 | |
|   // if is_scale_up is false, the input image only can be zoom out,
 | |
|   // the maximum resize scale cannot exceed 1.0
 | |
|   bool is_scale_up;
 | |
|   // padding stride, for is_mini_pad
 | |
|   int stride;
 | |
|   // for offseting the boxes by classes when using NMS
 | |
|   float max_wh;
 | |
|   // downsample strides for YOLOv5Lite to generate anchors,
 | |
|   // will take (8,16,32) as default values, might have stride=64.
 | |
|   std::vector<int> downsample_strides;
 | |
|   // anchors parameters, downsample_strides will take (8,16,32),
 | |
|   // each stride has three anchors with width and hight
 | |
|   std::vector<std::vector<float>> anchor_config;
 | |
|   /*! @brief
 | |
|     whether the model_file was exported with decode module. The official
 | |
|     YOLOv5Lite/export.py script will export ONNX file without
 | |
|     decode module. Please set it 'true' manually if the model file
 | |
|     was exported with decode module.
 | |
|     false : ONNX files without decode module.
 | |
|     true : ONNX file with decode module. default false.
 | |
|   */
 | |
|   bool is_decode_exported;
 | |
| 
 | |
|  private:
 | |
|   // necessary parameters for GenerateAnchors to generate anchors when ONNX file
 | |
|   // without decode module.
 | |
|   struct Anchor {
 | |
|     int grid0;
 | |
|     int grid1;
 | |
|     int stride;
 | |
|     float anchor_w;
 | |
|     float anchor_h;
 | |
|   };
 | |
| 
 | |
|   bool Initialize();
 | |
| 
 | |
|   bool Preprocess(Mat* mat, FDTensor* output,
 | |
|                   std::map<std::string, std::array<float, 2>>* im_info);
 | |
| 
 | |
| 
 | |
|   bool CudaPreprocess(Mat* mat, FDTensor* output,
 | |
|                       std::map<std::string, std::array<float, 2>>* im_info);
 | |
| 
 | |
|   bool Postprocess(FDTensor& infer_result, DetectionResult* result,
 | |
|                    const std::map<std::string, std::array<float, 2>>& im_info,
 | |
|                    float conf_threshold, float nms_iou_threshold);
 | |
| 
 | |
|   // the official YOLOv5Lite/export.py will export ONNX file without decode
 | |
|   // module.
 | |
|   // this fuction support the postporocess for ONNX file without decode module.
 | |
|   // set the `is_decode_exported = false`, this function will work.
 | |
|   bool PostprocessWithDecode(
 | |
|       FDTensor& infer_result, DetectionResult* result,
 | |
|       const std::map<std::string, std::array<float, 2>>& im_info,
 | |
|       float conf_threshold, float nms_iou_threshold);
 | |
| 
 | |
|   void LetterBox(Mat* mat, const std::vector<int>& size,
 | |
|                  const std::vector<float>& color, bool _auto,
 | |
|                  bool scale_fill = false, bool scale_up = true,
 | |
|                  int stride = 32);
 | |
| 
 | |
|   // generate anchors for decodeing when ONNX file without decode module.
 | |
|   void GenerateAnchors(const std::vector<int>& size,
 | |
|                        const std::vector<int>& downsample_strides,
 | |
|                        std::vector<Anchor>* anchors, const int num_anchors = 3);
 | |
| 
 | |
|   // whether to inference with dynamic shape (e.g ONNX export with dynamic shape
 | |
|   // or not.)
 | |
|   // while is_dynamic_shape if 'false', is_mini_pad will force 'false'. This
 | |
|   // value will
 | |
|   // auto check by fastdeploy after the internal Runtime already initialized.
 | |
|   bool is_dynamic_input_;
 | |
|   // CUDA host buffer for input image
 | |
|   uint8_t* input_img_cuda_buffer_host_ = nullptr;
 | |
|   // CUDA device buffer for input image
 | |
|   uint8_t* input_img_cuda_buffer_device_ = nullptr;
 | |
|   // CUDA device buffer for TRT input tensor
 | |
|   float* input_tensor_cuda_buffer_device_ = nullptr;
 | |
|   // Whether to use CUDA preprocessing
 | |
|   bool use_cuda_preprocessing_ = false;
 | |
|   // CUDA stream
 | |
|   void* cuda_stream_ = nullptr;
 | |
| };
 | |
| }  // namespace detection
 | |
| }  // namespace vision
 | |
| }  // namespace fastdeploy
 |