mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 11:56:44 +08:00 
			
		
		
		
	 16266969a1
			
		
	
	16266969a1
	
	
	
		
			
			* fuse bgr2rgb+normalize+hwc2chw * add more middle processors in fuse bgr2rgb with normalize * remove limit long
		
			
				
	
	
		
			107 lines
		
	
	
		
			3.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			107 lines
		
	
	
		
			3.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #include "fastdeploy/vision/common/processors/normalize.h"
 | |
| 
 | |
| namespace fastdeploy {
 | |
| namespace vision {
 | |
| Normalize::Normalize(const std::vector<float>& mean,
 | |
|                      const std::vector<float>& std, bool is_scale,
 | |
|                      const std::vector<float>& min,
 | |
|                      const std::vector<float>& max, bool swap_rb) {
 | |
|   FDASSERT(mean.size() == std.size(),
 | |
|            "Normalize: requires the size of mean equal to the size of std.");
 | |
|   std::vector<double> mean_(mean.begin(), mean.end());
 | |
|   std::vector<double> std_(std.begin(), std.end());
 | |
|   std::vector<double> min_(mean.size(), 0.0);
 | |
|   std::vector<double> max_(mean.size(), 255.0);
 | |
|   if (min.size() != 0) {
 | |
|     FDASSERT(
 | |
|         min.size() == mean.size(),
 | |
|         "Normalize: while min is defined, requires the size of min equal to "
 | |
|         "the size of mean.");
 | |
|     min_.assign(min.begin(), min.end());
 | |
|   }
 | |
|   if (max.size() != 0) {
 | |
|     FDASSERT(
 | |
|         min.size() == mean.size(),
 | |
|         "Normalize: while max is defined, requires the size of max equal to "
 | |
|         "the size of mean.");
 | |
|     max_.assign(max.begin(), max.end());
 | |
|   }
 | |
|   for (auto c = 0; c < mean_.size(); ++c) {
 | |
|     double alpha = 1.0;
 | |
|     if (is_scale) {
 | |
|       alpha /= (max_[c] - min_[c]);
 | |
|     }
 | |
|     double beta = -1.0 * (mean_[c] + min_[c] * alpha) / std_[c];
 | |
|     alpha /= std_[c];
 | |
|     alpha_.push_back(alpha);
 | |
|     beta_.push_back(beta);
 | |
|   }
 | |
|   swap_rb_ = swap_rb;
 | |
| }
 | |
| 
 | |
| bool Normalize::ImplByOpenCV(Mat* mat) {
 | |
|   cv::Mat* im = mat->GetOpenCVMat();
 | |
| 
 | |
|   std::vector<cv::Mat> split_im;
 | |
|   cv::split(*im, split_im);
 | |
|   if (swap_rb_) std::swap(split_im[0], split_im[2]);
 | |
|   for (int c = 0; c < im->channels(); c++) {
 | |
|     split_im[c].convertTo(split_im[c], CV_32FC1, alpha_[c], beta_[c]);
 | |
|   }
 | |
|   cv::merge(split_im, *im);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| #ifdef ENABLE_FLYCV
 | |
| bool Normalize::ImplByFlyCV(Mat* mat) {
 | |
|   fcv::Mat* im = mat->GetFlyCVMat();
 | |
|   if (im->channels() != 3) {
 | |
|     FDERROR << "Only supports 3-channels image in FlyCV, but now it's "
 | |
|             << im->channels() << "." << std::endl;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   std::vector<float> mean(3, 0);
 | |
|   std::vector<float> std(3, 0);
 | |
|   for (size_t i = 0; i < 3; ++i) {
 | |
|     std[i] = 1.0 / alpha_[i];
 | |
|     mean[i] = -1 * beta_[i] * std[i];
 | |
|   }
 | |
| 
 | |
|   std::vector<uint32_t> channel_reorder_index = {0, 1, 2};
 | |
|   if (swap_rb_) std::swap(channel_reorder_index[0], channel_reorder_index[2]);
 | |
| 
 | |
|   fcv::Mat new_im(im->width(), im->height(),
 | |
|                   fcv::FCVImageType::PKG_BGR_F32);
 | |
|   fcv::normalize_to_submean_to_reorder(*im, mean, std, channel_reorder_index,
 | |
|                                        new_im, true);
 | |
|   mat->SetMat(new_im);
 | |
|   return true;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| bool Normalize::Run(Mat* mat, const std::vector<float>& mean,
 | |
|                     const std::vector<float>& std, bool is_scale,
 | |
|                     const std::vector<float>& min,
 | |
|                     const std::vector<float>& max, ProcLib lib, bool swap_rb) {
 | |
|   auto n = Normalize(mean, std, is_scale, min, max, swap_rb);
 | |
|   return n(mat, lib);
 | |
| }
 | |
| 
 | |
| }  // namespace vision
 | |
| }  // namespace fastdeploy
 |