mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 17:17:14 +08:00
147 lines
4.5 KiB
Python
147 lines
4.5 KiB
Python
#!/bin/env python3
|
||
# -*- coding: utf-8 -*-
|
||
# @author DDDivano
|
||
# encoding=utf-8 vi:ts=4:sw=4:expandtab:ft=python
|
||
|
||
import json
|
||
|
||
from core import TEMPLATE, URL, build_request_payload, send_request
|
||
|
||
|
||
def test_stream_response():
|
||
data = {
|
||
"stream": True,
|
||
"messages": [
|
||
{"role": "system", "content": "你是一个知识渊博的 AI 助手"},
|
||
{"role": "user", "content": "讲讲爱因斯坦的相对论"},
|
||
],
|
||
"max_tokens": 10,
|
||
}
|
||
payload = build_request_payload(TEMPLATE, data)
|
||
resp = send_request(URL, payload, stream=True)
|
||
|
||
output = ""
|
||
for line in resp.iter_lines(decode_unicode=True):
|
||
if line.strip() == "" or not line.startswith("data: "):
|
||
continue
|
||
line = line[len("data: ") :]
|
||
if line.strip() == "[DONE]":
|
||
break
|
||
chunk = json.loads(line)
|
||
delta = chunk.get("choices", [{}])[0].get("delta", {})
|
||
output += delta.get("content", "")
|
||
|
||
print("Stream输出:", output)
|
||
assert "相对论" in output or len(output) > 0
|
||
|
||
|
||
def test_system_prompt_effect():
|
||
data = {
|
||
"stream": False,
|
||
"messages": [
|
||
{"role": "system", "content": "请用一句话回答"},
|
||
{"role": "user", "content": "什么是人工智能?"},
|
||
],
|
||
"max_tokens": 30,
|
||
}
|
||
payload = build_request_payload(TEMPLATE, data)
|
||
resp = send_request(URL, payload).json()
|
||
content = resp["choices"][0]["message"]["content"]
|
||
print("内容输出:", content)
|
||
assert len(content) < 50
|
||
|
||
|
||
def test_logprobs_enabled():
|
||
data = {
|
||
"stream": False,
|
||
"logprobs": True,
|
||
"top_logprobs": 5,
|
||
"messages": [{"role": "user", "content": "非洲的首都是?"}],
|
||
"max_tokens": 3,
|
||
}
|
||
payload = build_request_payload(TEMPLATE, data)
|
||
resp = send_request(URL, payload).json()
|
||
logprob_data = resp["choices"][0].get("logprobs")
|
||
print("LogProbs:", logprob_data)
|
||
assert logprob_data is not None
|
||
content_logprobs = logprob_data.get("content", [])
|
||
assert isinstance(content_logprobs, list)
|
||
assert all("token" in item for item in content_logprobs)
|
||
|
||
|
||
def test_stop_sequence():
|
||
data = {
|
||
"stream": False,
|
||
"stop": ["然后"],
|
||
"messages": [
|
||
{"role": "user", "content": "请输出:这是第一段。然后这是第二段。"},
|
||
],
|
||
"max_tokens": 20,
|
||
"top_p": 0,
|
||
}
|
||
payload = build_request_payload(TEMPLATE, data)
|
||
resp = send_request(URL, payload).json()
|
||
content = resp["choices"][0]["message"]["content"]
|
||
print("截断输出:", content)
|
||
assert "第二段" not in content
|
||
|
||
|
||
def test_sampling_parameters():
|
||
data = {
|
||
"stream": False,
|
||
"temperature": 0,
|
||
"top_p": 0,
|
||
"messages": [
|
||
{"role": "user", "content": "1+1=?,直接回答答案"},
|
||
],
|
||
"max_tokens": 50,
|
||
}
|
||
payload = build_request_payload(TEMPLATE, data)
|
||
resp = send_request(URL, payload).json()
|
||
answer = resp["choices"][0]["message"]["content"]
|
||
print("Sampling输出:", answer)
|
||
assert any(ans in answer for ans in ["2", "二"])
|
||
|
||
|
||
def test_multi_turn_conversation():
|
||
data = {
|
||
"stream": False,
|
||
"messages": [
|
||
{"role": "user", "content": "牛顿是谁?"},
|
||
{"role": "assistant", "content": "牛顿是一位物理学家。"},
|
||
{"role": "user", "content": "他提出了什么理论?"},
|
||
],
|
||
"max_tokens": 30,
|
||
}
|
||
payload = build_request_payload(TEMPLATE, data)
|
||
resp = send_request(URL, payload).json()
|
||
content = resp["choices"][0]["message"]["content"]
|
||
print("多轮记忆:", content)
|
||
assert "三大运动定律" in content or "万有引力" in content
|
||
|
||
|
||
def test_bad_words_filtering():
|
||
banned_tokens = ["你", "我", "年龄"]
|
||
|
||
data = {
|
||
"stream": False,
|
||
"messages": [
|
||
{"role": "system", "content": "你是一个助手,回答简洁清楚"},
|
||
{"role": "user", "content": "请输出我的年龄是10岁"},
|
||
],
|
||
"top_p": 0,
|
||
"max_tokens": 69,
|
||
"bad_words": banned_tokens,
|
||
}
|
||
|
||
payload = build_request_payload(TEMPLATE, data)
|
||
response = send_request(URL, payload).json()
|
||
|
||
content = response["choices"][0]["message"]["content"]
|
||
print("生成内容:", content)
|
||
|
||
for word in banned_tokens:
|
||
assert word not in content, f"bad_word '{word}' 不应出现在生成结果中"
|
||
|
||
print("test_bad_words_filtering 通过:生成结果未包含被禁词")
|