Files
FastDeploy/test/ce/server/test_base_chat.py
Divano 50db0d7ba9 add case (#3150)
* add test base class

* fix codestyle

* fix codestyle

* add base chat
2025-08-01 17:30:58 +08:00

147 lines
4.5 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#!/bin/env python3
# -*- coding: utf-8 -*-
# @author DDDivano
# encoding=utf-8 vi:ts=4:sw=4:expandtab:ft=python
import json
from core import TEMPLATE, URL, build_request_payload, send_request
def test_stream_response():
data = {
"stream": True,
"messages": [
{"role": "system", "content": "你是一个知识渊博的 AI 助手"},
{"role": "user", "content": "讲讲爱因斯坦的相对论"},
],
"max_tokens": 10,
}
payload = build_request_payload(TEMPLATE, data)
resp = send_request(URL, payload, stream=True)
output = ""
for line in resp.iter_lines(decode_unicode=True):
if line.strip() == "" or not line.startswith("data: "):
continue
line = line[len("data: ") :]
if line.strip() == "[DONE]":
break
chunk = json.loads(line)
delta = chunk.get("choices", [{}])[0].get("delta", {})
output += delta.get("content", "")
print("Stream输出:", output)
assert "相对论" in output or len(output) > 0
def test_system_prompt_effect():
data = {
"stream": False,
"messages": [
{"role": "system", "content": "请用一句话回答"},
{"role": "user", "content": "什么是人工智能?"},
],
"max_tokens": 30,
}
payload = build_request_payload(TEMPLATE, data)
resp = send_request(URL, payload).json()
content = resp["choices"][0]["message"]["content"]
print("内容输出:", content)
assert len(content) < 50
def test_logprobs_enabled():
data = {
"stream": False,
"logprobs": True,
"top_logprobs": 5,
"messages": [{"role": "user", "content": "非洲的首都是?"}],
"max_tokens": 3,
}
payload = build_request_payload(TEMPLATE, data)
resp = send_request(URL, payload).json()
logprob_data = resp["choices"][0].get("logprobs")
print("LogProbs:", logprob_data)
assert logprob_data is not None
content_logprobs = logprob_data.get("content", [])
assert isinstance(content_logprobs, list)
assert all("token" in item for item in content_logprobs)
def test_stop_sequence():
data = {
"stream": False,
"stop": ["然后"],
"messages": [
{"role": "user", "content": "请输出:这是第一段。然后这是第二段。"},
],
"max_tokens": 20,
"top_p": 0,
}
payload = build_request_payload(TEMPLATE, data)
resp = send_request(URL, payload).json()
content = resp["choices"][0]["message"]["content"]
print("截断输出:", content)
assert "第二段" not in content
def test_sampling_parameters():
data = {
"stream": False,
"temperature": 0,
"top_p": 0,
"messages": [
{"role": "user", "content": "1+1=,直接回答答案"},
],
"max_tokens": 50,
}
payload = build_request_payload(TEMPLATE, data)
resp = send_request(URL, payload).json()
answer = resp["choices"][0]["message"]["content"]
print("Sampling输出:", answer)
assert any(ans in answer for ans in ["2", ""])
def test_multi_turn_conversation():
data = {
"stream": False,
"messages": [
{"role": "user", "content": "牛顿是谁?"},
{"role": "assistant", "content": "牛顿是一位物理学家。"},
{"role": "user", "content": "他提出了什么理论?"},
],
"max_tokens": 30,
}
payload = build_request_payload(TEMPLATE, data)
resp = send_request(URL, payload).json()
content = resp["choices"][0]["message"]["content"]
print("多轮记忆:", content)
assert "三大运动定律" in content or "万有引力" in content
def test_bad_words_filtering():
banned_tokens = ["", "", "年龄"]
data = {
"stream": False,
"messages": [
{"role": "system", "content": "你是一个助手,回答简洁清楚"},
{"role": "user", "content": "请输出我的年龄是10岁"},
],
"top_p": 0,
"max_tokens": 69,
"bad_words": banned_tokens,
}
payload = build_request_payload(TEMPLATE, data)
response = send_request(URL, payload).json()
content = response["choices"][0]["message"]["content"]
print("生成内容:", content)
for word in banned_tokens:
assert word not in content, f"bad_word '{word}' 不应出现在生成结果中"
print("test_bad_words_filtering 通过:生成结果未包含被禁词")