mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-09-28 13:22:23 +08:00
572 lines
18 KiB
Python
572 lines
18 KiB
Python
"""
|
||
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||
#
|
||
# Licensed under the Apache License, Version 2.0 (the "License"
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# http://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
"""
|
||
|
||
import argparse
|
||
import codecs
|
||
import importlib
|
||
import logging
|
||
import os
|
||
import re
|
||
import socket
|
||
import tarfile
|
||
import time
|
||
from datetime import datetime
|
||
from logging.handlers import BaseRotatingHandler
|
||
from pathlib import Path
|
||
from typing import Literal, TypeVar, Union
|
||
|
||
import requests
|
||
import yaml
|
||
from aistudio_sdk.snapshot_download import snapshot_download
|
||
from tqdm import tqdm
|
||
from typing_extensions import TypeIs, assert_never
|
||
|
||
from fastdeploy import envs
|
||
|
||
T = TypeVar("T")
|
||
|
||
|
||
class EngineError(Exception):
|
||
"""Base exception class for engine errors"""
|
||
|
||
def __init__(self, message, error_code=400):
|
||
super().__init__(message)
|
||
self.error_code = error_code
|
||
|
||
|
||
class ColoredFormatter(logging.Formatter):
|
||
"""自定义日志格式器,用于控制台输出带颜色"""
|
||
COLOR_CODES = {
|
||
logging.WARNING: 33, # 黄色
|
||
logging.ERROR: 31, # 红色
|
||
logging.CRITICAL: 31, # 红色
|
||
}
|
||
|
||
def format(self, record):
|
||
color_code = self.COLOR_CODES.get(record.levelno, 0)
|
||
prefix = f'\033[{color_code}m'
|
||
suffix = '\033[0m'
|
||
message = super().format(record)
|
||
if color_code:
|
||
message = f"{prefix}{message}{suffix}"
|
||
return message
|
||
|
||
|
||
class DailyRotatingFileHandler(BaseRotatingHandler):
|
||
"""
|
||
like `logging.TimedRotatingFileHandler`, but this class support multi-process
|
||
"""
|
||
|
||
def __init__(self,
|
||
filename,
|
||
backupCount=0,
|
||
encoding="utf-8",
|
||
delay=False,
|
||
utc=False,
|
||
**kwargs):
|
||
"""
|
||
初始化 RotatingFileHandler 对象。
|
||
|
||
Args:
|
||
filename (str): 日志文件的路径,可以是相对路径或绝对路径。
|
||
backupCount (int, optional, default=0): 保存的备份文件数量,默认为 0,表示不保存备份文件。
|
||
encoding (str, optional, default='utf-8'): 编码格式,默认为 'utf-8'。
|
||
delay (bool, optional, default=False): 是否延迟写入,默认为 False,表示立即写入。
|
||
utc (bool, optional, default=False): 是否使用 UTC 时区,默认为 False,表示不使用 UTC 时区。
|
||
kwargs (dict, optional): 其他参数将被传递给 BaseRotatingHandler 类的 init 方法。
|
||
|
||
Raises:
|
||
TypeError: 如果 filename 不是 str 类型。
|
||
ValueError: 如果 backupCount 小于等于 0。
|
||
"""
|
||
self.backup_count = backupCount
|
||
self.utc = utc
|
||
self.suffix = "%Y-%m-%d"
|
||
self.base_log_path = Path(filename)
|
||
self.base_filename = self.base_log_path.name
|
||
self.current_filename = self._compute_fn()
|
||
self.current_log_path = self.base_log_path.with_name(
|
||
self.current_filename)
|
||
BaseRotatingHandler.__init__(self, filename, "a", encoding, delay)
|
||
|
||
def shouldRollover(self, record):
|
||
"""
|
||
check scroll through the log
|
||
"""
|
||
if self.current_filename != self._compute_fn():
|
||
return True
|
||
return False
|
||
|
||
def doRollover(self):
|
||
"""
|
||
scroll log
|
||
"""
|
||
if self.stream:
|
||
self.stream.close()
|
||
self.stream = None
|
||
|
||
self.current_filename = self._compute_fn()
|
||
self.current_log_path = self.base_log_path.with_name(
|
||
self.current_filename)
|
||
|
||
if not self.delay:
|
||
self.stream = self._open()
|
||
|
||
self.delete_expired_files()
|
||
|
||
def _compute_fn(self):
|
||
"""
|
||
Calculate the log file name corresponding current time
|
||
"""
|
||
return self.base_filename + "." + time.strftime(
|
||
self.suffix, time.localtime())
|
||
|
||
def _open(self):
|
||
"""
|
||
open new log file
|
||
"""
|
||
if self.encoding is None:
|
||
stream = open(str(self.current_log_path), self.mode)
|
||
else:
|
||
stream = codecs.open(str(self.current_log_path), self.mode,
|
||
self.encoding)
|
||
|
||
if self.base_log_path.exists():
|
||
try:
|
||
if (not self.base_log_path.is_symlink() or os.readlink(
|
||
self.base_log_path) != self.current_filename):
|
||
os.remove(self.base_log_path)
|
||
except OSError:
|
||
pass
|
||
|
||
try:
|
||
os.symlink(self.current_filename, str(self.base_log_path))
|
||
except OSError:
|
||
pass
|
||
return stream
|
||
|
||
def delete_expired_files(self):
|
||
"""
|
||
delete expired log files
|
||
"""
|
||
if self.backup_count <= 0:
|
||
return
|
||
|
||
file_names = os.listdir(str(self.base_log_path.parent))
|
||
result = []
|
||
prefix = self.base_filename + "."
|
||
plen = len(prefix)
|
||
for file_name in file_names:
|
||
if file_name[:plen] == prefix:
|
||
suffix = file_name[plen:]
|
||
if re.match(r"^\d{4}-\d{2}-\d{2}(\.\w+)?$", suffix):
|
||
result.append(file_name)
|
||
if len(result) < self.backup_count:
|
||
result = []
|
||
else:
|
||
result.sort()
|
||
result = result[:len(result) - self.backup_count]
|
||
|
||
for file_name in result:
|
||
os.remove(str(self.base_log_path.with_name(file_name)))
|
||
|
||
|
||
def get_logger(name,
|
||
file_name,
|
||
without_formater=False,
|
||
print_to_console=False):
|
||
"""
|
||
get logger
|
||
"""
|
||
log_dir = envs.FD_LOG_DIR
|
||
if not os.path.exists(log_dir):
|
||
os.mkdir(log_dir)
|
||
is_debug = int(envs.FD_DEBUG)
|
||
logger = logging.getLogger(name)
|
||
if is_debug:
|
||
logger.setLevel(level=logging.DEBUG)
|
||
else:
|
||
logger.setLevel(level=logging.INFO)
|
||
|
||
for handler in logger.handlers[:]:
|
||
logger.removeHandler(handler)
|
||
|
||
LOG_FILE = "{0}/{1}".format(log_dir, file_name)
|
||
backup_count = int(envs.FD_LOG_BACKUP_COUNT)
|
||
handler = DailyRotatingFileHandler(LOG_FILE, backupCount=backup_count)
|
||
formatter = ColoredFormatter(
|
||
"%(levelname)-8s %(asctime)s %(process)-5s %(filename)s[line:%(lineno)d] %(message)s"
|
||
)
|
||
|
||
console_handler = logging.StreamHandler()
|
||
if not without_formater:
|
||
handler.setFormatter(formatter)
|
||
console_handler.setFormatter(formatter)
|
||
logger.addHandler(handler)
|
||
if print_to_console:
|
||
logger.addHandler(console_handler)
|
||
handler.propagate = False
|
||
console_handler.propagate = False
|
||
return logger
|
||
|
||
|
||
def str_to_datetime(date_string):
|
||
"""
|
||
string to datetime class object
|
||
"""
|
||
if "." in date_string:
|
||
return datetime.strptime(date_string, "%Y-%m-%d %H:%M:%S.%f")
|
||
else:
|
||
return datetime.strptime(date_string, "%Y-%m-%d %H:%M:%S")
|
||
|
||
|
||
def datetime_diff(datetime_start, datetime_end):
|
||
"""
|
||
Calculate the difference between two dates and times(s)
|
||
|
||
Args:
|
||
datetime_start (Union[str, datetime.datetime]): start time
|
||
datetime_end (Union[str, datetime.datetime]): end time
|
||
|
||
Returns:
|
||
float: date time difference(s)
|
||
"""
|
||
if isinstance(datetime_start, str):
|
||
datetime_start = str_to_datetime(datetime_start)
|
||
if isinstance(datetime_end, str):
|
||
datetime_end = str_to_datetime(datetime_end)
|
||
if datetime_end > datetime_start:
|
||
cost = datetime_end - datetime_start
|
||
else:
|
||
cost = datetime_start - datetime_end
|
||
return cost.total_seconds()
|
||
|
||
|
||
def download_file(url, save_path):
|
||
"""Download file with progress bar"""
|
||
try:
|
||
response = requests.get(url, stream=True)
|
||
response.raise_for_status()
|
||
|
||
total_size = int(response.headers.get('content-length', 0))
|
||
progress_bar = tqdm(total=total_size,
|
||
unit='iB',
|
||
unit_scale=True,
|
||
desc=f"Downloading {os.path.basename(url)}")
|
||
|
||
with open(save_path, 'wb') as f:
|
||
for chunk in response.iter_content(chunk_size=1024):
|
||
if chunk: # filter out keep-alive chunks
|
||
f.write(chunk)
|
||
progress_bar.update(len(chunk))
|
||
|
||
progress_bar.close()
|
||
return True
|
||
except Exception as e:
|
||
if os.path.exists(save_path):
|
||
os.remove(save_path)
|
||
raise RuntimeError(f"Download failed: {str(e)}")
|
||
|
||
|
||
def extract_tar(tar_path, output_dir):
|
||
"""Extract tar file with progress tracking"""
|
||
try:
|
||
with tarfile.open(tar_path) as tar:
|
||
members = tar.getmembers()
|
||
with tqdm(total=len(members), desc="Extracting files") as pbar:
|
||
for member in members:
|
||
tar.extract(member, path=output_dir)
|
||
pbar.update(1)
|
||
print(f"Successfully extracted to: {output_dir}")
|
||
except Exception as e:
|
||
raise RuntimeError(f"Extraction failed: {str(e)}")
|
||
|
||
|
||
def download_model(url, output_dir, temp_tar):
|
||
"""
|
||
下载模型,并将其解压到指定目录。
|
||
|
||
Args:
|
||
url (str): 模型文件的URL地址。
|
||
output_dir (str): 模型文件要保存的目录路径。
|
||
temp_tar (str, optional): 临时保存模型文件的TAR包名称,默认为'temp.tar'.
|
||
|
||
Raises:
|
||
Exception: 如果下载或解压过程中出现任何错误,都会抛出Exception异常。
|
||
|
||
Returns:
|
||
None - 无返回值,只是在下载和解压过程中进行日志输出和清理临时文件。
|
||
"""
|
||
try:
|
||
temp_tar = os.path.join(output_dir, temp_tar)
|
||
# Download the file
|
||
llm_logger.info(f"\nStarting download from: {url} {temp_tar}")
|
||
download_file(url, temp_tar)
|
||
# Extract the archive
|
||
print("\nExtracting files...")
|
||
extract_tar(temp_tar, output_dir)
|
||
|
||
except Exception:
|
||
# Cleanup on failure
|
||
if os.path.exists(temp_tar):
|
||
os.remove(temp_tar)
|
||
raise Exception(
|
||
f"""Failed to get model from {url}, please recheck the model name from
|
||
https://github.com/PaddlePaddle/PaddleNLP/blob/develop/llm/server/docs/static_models.md"""
|
||
)
|
||
finally:
|
||
# Cleanup temp file
|
||
if os.path.exists(temp_tar):
|
||
os.remove(temp_tar)
|
||
|
||
|
||
class FlexibleArgumentParser(argparse.ArgumentParser):
|
||
"""
|
||
扩展 argparse.ArgumentParser,支持从 YAML 文件加载参数。
|
||
"""
|
||
|
||
def __init__(self, *args, config_arg='--config', sep='_', **kwargs):
|
||
super().__init__(*args, **kwargs)
|
||
self.sep = sep # 用于展平嵌套字典的分隔符
|
||
# 创建临时解析器,仅用于解析 --config 参数
|
||
self.tmp_parser = argparse.ArgumentParser(add_help=False)
|
||
self.tmp_parser.add_argument(config_arg,
|
||
type=str,
|
||
help='Path to YAML config file')
|
||
|
||
def parse_args(self, args=None, namespace=None):
|
||
# 使用临时解析器解析出 --config 参数
|
||
tmp_ns, remaining_args = self.tmp_parser.parse_known_args(args=args)
|
||
config_path = tmp_ns.config
|
||
|
||
# 加载 YAML 文件并展平嵌套结构
|
||
config = {}
|
||
if config_path:
|
||
with open(config_path, 'r') as f:
|
||
loaded_config = yaml.safe_load(f)
|
||
config = self._flatten_dict(loaded_config)
|
||
|
||
# 获取所有已定义参数的 dest 名称
|
||
defined_dests = {action.dest for action in self._actions}
|
||
|
||
# 过滤出已定义的参数
|
||
filtered_config = {
|
||
k: v
|
||
for k, v in config.items() if k in defined_dests
|
||
}
|
||
|
||
# 创建或使用现有的命名空间对象
|
||
if namespace is None:
|
||
namespace = argparse.Namespace()
|
||
|
||
# 将配置参数设置到命名空间
|
||
for key, value in filtered_config.items():
|
||
setattr(namespace, key, value)
|
||
|
||
# 解析剩余参数并覆盖默认值
|
||
return super().parse_args(args=remaining_args, namespace=namespace)
|
||
|
||
def _flatten_dict(self, d):
|
||
"""将嵌套字典展平为单层字典,键由分隔符连接"""
|
||
|
||
def _flatten(d, parent_key=''):
|
||
items = []
|
||
for k, v in d.items():
|
||
new_key = f"{parent_key}{self.sep}{k}" if parent_key else k
|
||
if isinstance(v, dict):
|
||
items.extend(_flatten(v, new_key).items())
|
||
else:
|
||
items.append((new_key, v))
|
||
return dict(items)
|
||
|
||
return _flatten(d)
|
||
|
||
|
||
def resolve_obj_from_strname(strname: str):
|
||
module_name, obj_name = strname.rsplit(".", 1)
|
||
module = importlib.import_module(module_name)
|
||
return getattr(module, obj_name)
|
||
|
||
|
||
def check_unified_ckpt(model_dir):
|
||
"""
|
||
Check if the model is a PaddleNLP unified checkpoint
|
||
"""
|
||
model_files = list()
|
||
all_files = os.listdir(model_dir)
|
||
for x in all_files:
|
||
if x.startswith("model") and x.endswith(".safetensors"):
|
||
model_files.append(x)
|
||
|
||
is_unified_ckpt = len(model_files) > 0
|
||
if not is_unified_ckpt:
|
||
return False
|
||
|
||
if len(model_files) == 1 and model_files[0] == "model.safetensors":
|
||
return True
|
||
|
||
try:
|
||
# check all the file exists
|
||
safetensors_num = int(
|
||
model_files[0].strip(".safetensors").split("-")[-1])
|
||
flags = [0] * safetensors_num
|
||
for x in model_files:
|
||
current_index = int(x.strip(".safetensors").split("-")[1])
|
||
flags[current_index - 1] = 1
|
||
assert sum(flags) == len(
|
||
model_files
|
||
), "Number of safetensor files should be {}, but now it's {}".format(
|
||
len(model_files), sum(flags))
|
||
except Exception as e:
|
||
raise Exception(f"Failed to check unified checkpoint, details: {e}.")
|
||
return is_unified_ckpt
|
||
|
||
|
||
def get_host_ip():
|
||
"""
|
||
Get host IP address
|
||
"""
|
||
ip = socket.gethostbyname(socket.gethostname())
|
||
return ip
|
||
|
||
|
||
def is_port_available(host, port):
|
||
"""
|
||
Check the port is available
|
||
"""
|
||
import errno
|
||
import socket
|
||
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
|
||
try:
|
||
s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
|
||
s.bind((host, port))
|
||
return True
|
||
except socket.error as e:
|
||
if e.errno == errno.EADDRINUSE:
|
||
return False
|
||
return True
|
||
|
||
|
||
def singleton(cls):
|
||
"""
|
||
Singleton decorator for a class.
|
||
"""
|
||
instances = {}
|
||
|
||
def get_instance(*args, **kwargs):
|
||
if cls not in instances:
|
||
instances[cls] = cls(*args, **kwargs)
|
||
return instances[cls]
|
||
|
||
return get_instance
|
||
|
||
|
||
def print_gpu_memory_use(gpu_id: int, title: str) -> None:
|
||
""" Print memory usage """
|
||
import pynvml
|
||
pynvml.nvmlInit()
|
||
handle = pynvml.nvmlDeviceGetHandleByIndex(gpu_id)
|
||
meminfo = pynvml.nvmlDeviceGetMemoryInfo(handle)
|
||
pynvml.nvmlShutdown()
|
||
|
||
print(
|
||
f"\n{title}:",
|
||
f"\n\tDevice Total memory: {meminfo.total}",
|
||
f"\n\tDevice Used memory: {meminfo.used}",
|
||
f"\n\tDevice Free memory: {meminfo.free}",
|
||
)
|
||
|
||
|
||
def ceil_div(x: int, y: int) -> int:
|
||
"""
|
||
Perform ceiling division of two integers.
|
||
|
||
Args:
|
||
x: the dividend.
|
||
y: the divisor.
|
||
|
||
Returns:
|
||
The result of the ceiling division.
|
||
"""
|
||
return (x + y - 1) // y
|
||
|
||
|
||
def none_or_str(value):
|
||
"""
|
||
Keep parameters None, not the string "None".
|
||
"""
|
||
return None if value == "None" else value
|
||
|
||
|
||
def retrive_model_from_server(model_name_or_path, revision="master"):
|
||
"""
|
||
Download pretrained model from AIStudio automatically
|
||
"""
|
||
if os.path.exists(model_name_or_path):
|
||
return model_name_or_path
|
||
try:
|
||
repo_id = model_name_or_path
|
||
if repo_id.lower().strip().startswith("baidu"):
|
||
repo_id = "PaddlePaddle" + repo_id.strip()[5:]
|
||
local_path = envs.FD_MODEL_CACHE
|
||
if local_path is None:
|
||
local_path = f'{os.getenv("HOME")}/{repo_id}'
|
||
snapshot_download(repo_id=repo_id,
|
||
revision=revision,
|
||
local_dir=local_path)
|
||
model_name_or_path = local_path
|
||
except Exception:
|
||
raise Exception(
|
||
f"The setting model_name_or_path:{model_name_or_path} is not exist."
|
||
)
|
||
return model_name_or_path
|
||
|
||
|
||
def is_list_of(
|
||
value: object,
|
||
typ: Union[type[T], tuple[type[T], ...]],
|
||
*,
|
||
check: Literal["first", "all"] = "first",
|
||
) -> TypeIs[list[T]]:
|
||
"""
|
||
Check if the value is a list of specified type.
|
||
|
||
Args:
|
||
value: The value to check.
|
||
typ: The type or tuple of types to check against.
|
||
check: The check mode, either "first" or "all".
|
||
|
||
Returns:
|
||
Whether the value is a list of specified type.
|
||
"""
|
||
if not isinstance(value, list):
|
||
return False
|
||
|
||
if check == "first":
|
||
return len(value) == 0 or isinstance(value[0], typ)
|
||
elif check == "all":
|
||
return all(isinstance(v, typ) for v in value)
|
||
|
||
assert_never(check)
|
||
|
||
|
||
llm_logger = get_logger("fastdeploy", "fastdeploy.log")
|
||
data_processor_logger = get_logger("data_processor", "data_processor.log")
|
||
scheduler_logger = get_logger("scheduler", "scheduler.log")
|
||
api_server_logger = get_logger("api_server", "api_server.log")
|
||
console_logger = get_logger("console", "console.log", print_to_console=True)
|
||
spec_logger = get_logger("speculate", "speculate.log")
|