Files
FastDeploy/examples/vision/segmentation/paddleseg

PaddleSeg 模型部署

模型版本说明

目前FastDeploy支持如下模型的部署

准备PaddleSeg部署模型

PaddleSeg模型导出请参考其文档说明模型导出

注意在使用PaddleSeg模型导出时可指定--input_shape参数若预测输入图片尺寸并不固定建议使用默认值即不指定该参数。PaddleSeg导出的模型包含model.pdmodelmodel.pdiparamsdeploy.yaml三个文件FastDeploy会从yaml文件中获取模型在推理时需要的预处理信息。

下载预训练模型

为了方便开发者的测试下面提供了PaddleSeg导出的部分模型导出方式为不指定input_shapewith_softmax指定without_argmax),开发者可直接下载使用。

模型 参数文件大小 输入Shape mIoU mIoU (flip) mIoU (ms+flip)
Unet-cityscapes 52MB 1024x512 65.00% 66.02% 66.89%
PP-LiteSeg-T(STDC1)-cityscapes 31MB 1024x512 73.10% 73.89% -
PP-HumanSegV1-Lite 543KB 192x192 86.2% - -
PP-HumanSegV1-Server 103MB 512x512 96.47% - -
FCN-HRNet-W18-cityscapes 37MB 1024x512 78.97% 79.49% 79.74%
Deeplabv3-ResNet50-OS8-cityscapes 150MB 1024x512 79.90% 80.22% 80.47%

详细部署文档