Files
FastDeploy/examples/vision
Zheng_Bicheng 4ffcfbe726 [Backend] Add RKNPU2 backend support (#456)
* 10-29/14:05
* 新增cmake
* 新增rknpu2 backend

* 10-29/14:43
* Runtime fd_type新增RKNPU代码

* 10-29/15:02
* 新增ppseg RKNPU2推理代码

* 10-29/15:46
* 新增ppseg RKNPU2 cpp example代码

* 10-29/15:51
* 新增README文档

* 10-29/15:51
* 按照要求修改部分注释以及变量名称

* 10-29/15:51
* 修复重命名之后,cc文件中的部分代码还用旧函数名的bug

* 10-29/22:32
* str(Device::NPU)将输出NPU而不是UNKOWN
* 修改runtime文件中的注释格式
* 新增Building Summary ENABLE_RKNPU2_BACKEND输出
* pybind新增支持rknpu2
* 新增python编译选项
* 新增PPSeg Python代码
* 新增以及更新各种文档

* 10-30/14:11
* 尝试修复编译cuda时产生的错误

* 10-30/19:27
* 修改CpuName和CoreMask层级
* 修改ppseg rknn推理层级
* 图片将移动到网络进行下载

* 10-30/19:39
* 更新文档

* 10-30/19:39
* 更新文档
* 更新ppseg rknpu2 example中的函数命名方式
* 更新ppseg rknpu2 example为一个cc文件
* 修复disable_normalize_and_permute部分的逻辑错误
* 移除rknpu2初始化时的无用参数

* 10-30/19:39
* 尝试重置python代码

* 10-30/10:16
* rknpu2_config.h文件不再包含rknn_api头文件防止出现导入错误的问题

* 10-31/14:31
* 修改pybind,支持最新的rknpu2 backends
* 再次支持ppseg python推理
* 移动cpuname 和 coremask的层级

* 10-31/15:35
* 尝试修复rknpu2导入错误

* 10-31/19:00
* 新增RKNPU2模型导出代码以及其对应的文档
* 更新大量文档错误

* 10-31/19:00
* 现在编译完fastdeploy仓库后无需重新设置RKNN2_TARGET_SOC

* 10-31/19:26
* 修改部分错误文档

* 10-31/19:26
* 修复错误删除的部分
* 修复各种错误文档
* 修复FastDeploy.cmake在设置RKNN2_TARGET_SOC错误时,提示错误的信息
* 修复rknpu2_backend.cc中存在的中文注释

* 10-31/20:45
* 删除无用的注释

* 10-31/20:45
* 按照要求修改Device::NPU为Device::RKNPU,硬件将共用valid_hardware_backends
* 删除无用注释以及debug代码

* 11-01/09:45
* 更新变量命名方式

* 11-01/10:16
* 修改部分文档,修改函数命名方式

Co-authored-by: Jason <jiangjiajun@baidu.com>
2022-11-01 11:14:05 +08:00
..

视觉模型部署

本目录下提供了各类视觉模型的部署,主要涵盖以下任务类型

任务类型 说明 预测结果结构体
Detection 目标检测,输入图像,检测图像中物体位置,并返回检测框坐标及类别和置信度 DetectionResult
Segmentation 语义分割,输入图像,给出图像中每个像素的分类及置信度 SegmentationResult
Classification 图像分类,输入图像,给出图像的分类结果和置信度 ClassifyResult
FaceDetection 人脸检测,输入图像,检测图像中人脸位置,并返回检测框坐标及人脸关键点 FaceDetectionResult
KeypointDetection 关键点检测,输入图像,返回图像中人物行为的各个关键点坐标和置信度 KeyPointDetectionResult
FaceRecognition 人脸识别输入图像返回可用于相似度计算的人脸特征的embedding FaceRecognitionResult
Matting 抠图输入图像返回图片的前景每个像素点的Alpha值 MattingResult
OCR 文本框检测,分类,文本框内容识别,输入图像,返回文本框坐标,文本框的方向类别以及框内的文本内容 OCRResult

FastDeploy API设计

视觉模型具有较有统一任务范式在设计API时包括C++/PythonFastDeploy将视觉模型的部署拆分为四个步骤

  • 模型加载
  • 图像预处理
  • 模型推理
  • 推理结果后处理

FastDeploy针对飞桨的视觉套件以及外部热门模型提供端到端的部署服务用户只需准备模型按以下步骤即可完成整个模型的部署

  • 加载模型
  • 调用predict接口

FastDeploy在各视觉模型部署时也支持一键切换后端推理引擎详情参阅如何切换模型推理引擎