mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-11-02 20:54:03 +08:00
* 10-29/14:05 * 新增cmake * 新增rknpu2 backend * 10-29/14:43 * Runtime fd_type新增RKNPU代码 * 10-29/15:02 * 新增ppseg RKNPU2推理代码 * 10-29/15:46 * 新增ppseg RKNPU2 cpp example代码 * 10-29/15:51 * 新增README文档 * 10-29/15:51 * 按照要求修改部分注释以及变量名称 * 10-29/15:51 * 修复重命名之后,cc文件中的部分代码还用旧函数名的bug * 10-29/22:32 * str(Device::NPU)将输出NPU而不是UNKOWN * 修改runtime文件中的注释格式 * 新增Building Summary ENABLE_RKNPU2_BACKEND输出 * pybind新增支持rknpu2 * 新增python编译选项 * 新增PPSeg Python代码 * 新增以及更新各种文档 * 10-30/14:11 * 尝试修复编译cuda时产生的错误 * 10-30/19:27 * 修改CpuName和CoreMask层级 * 修改ppseg rknn推理层级 * 图片将移动到网络进行下载 * 10-30/19:39 * 更新文档 * 10-30/19:39 * 更新文档 * 更新ppseg rknpu2 example中的函数命名方式 * 更新ppseg rknpu2 example为一个cc文件 * 修复disable_normalize_and_permute部分的逻辑错误 * 移除rknpu2初始化时的无用参数 * 10-30/19:39 * 尝试重置python代码 * 10-30/10:16 * rknpu2_config.h文件不再包含rknn_api头文件防止出现导入错误的问题 * 10-31/14:31 * 修改pybind,支持最新的rknpu2 backends * 再次支持ppseg python推理 * 移动cpuname 和 coremask的层级 * 10-31/15:35 * 尝试修复rknpu2导入错误 * 10-31/19:00 * 新增RKNPU2模型导出代码以及其对应的文档 * 更新大量文档错误 * 10-31/19:00 * 现在编译完fastdeploy仓库后无需重新设置RKNN2_TARGET_SOC * 10-31/19:26 * 修改部分错误文档 * 10-31/19:26 * 修复错误删除的部分 * 修复各种错误文档 * 修复FastDeploy.cmake在设置RKNN2_TARGET_SOC错误时,提示错误的信息 * 修复rknpu2_backend.cc中存在的中文注释 * 10-31/20:45 * 删除无用的注释 * 10-31/20:45 * 按照要求修改Device::NPU为Device::RKNPU,硬件将共用valid_hardware_backends * 删除无用注释以及debug代码 * 11-01/09:45 * 更新变量命名方式 * 11-01/10:16 * 修改部分文档,修改函数命名方式 Co-authored-by: Jason <jiangjiajun@baidu.com>
1.6 KiB
1.6 KiB
导出模型指南
简介
Fastdeploy已经简单的集成了onnx->rknn的转换过程。本教程使用tools/export.py文件导出模型,在导出之前需要编写yaml配置文件。 在进行转换前请根据rknn_toolkit2安装文档检查环境是否已经安装成功。
export.py 配置参数介绍
| 参数名称 | 是否可以为空 | 参数作用 |
|---|---|---|
| verbose | 是,默认值为True | 是否在屏幕上输出转换模型时的具体信息 |
| config_path | 否 | 配置文件路径 |
config 配置文件介绍
config yaml文件模版
model_path: ./portrait_pp_humansegv2_lite_256x144_pretrained.onnx
output_folder: ./
target_platform: RK3588
normalize:
mean: [0.5,0.5,0.5]
std: [0.5,0.5,0.5]
outputs: None
config 配置参数介绍
- model_path: 模型储存路径
- output_folder: 模型储存文件夹名字
- target_platform: 模型跑在哪一个设备上,只能为RK3588或RK3568
- normalize: 配置在NPU上的normalize操作,有std和mean两个参数
- std: 如果在外部做normalize操作,请配置为[1/255,1/255,1/255]
- mean: 如果在外部做normalize操作,请配置为[0,0,0]
- outputs: 输出节点列表,如果使用默认输出节点,请配置为None
如何转换模型
根目录下执行以下代码
python tools/export.py --config_path=./config.yaml
模型导出要注意的事项
- 请不要导出带softmax和argmax的模型,这两个算子存在bug,请在外部进行运算