mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 20:02:53 +08:00 
			
		
		
		
	 129dda7809
			
		
	
	129dda7809
	
	
	
		
			
			* Add sort function * Add isfinite function * upgrade isinf isnan * Add Scalar to FDTensor * Add floor, ceil function * add cast functions * Update out_tmp * Update quantile * add gather scatter along axis * finish quantile function * Add quantile unittest * refresh code style for test source code * Add comments * Add full function * Add scalar to fd tensor * Add full unittest * Add functions headers * move fdtensor operators to fastdeploy namespace
		
			
				
	
	
		
			109 lines
		
	
	
		
			4.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			109 lines
		
	
	
		
			4.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #include "fastdeploy/core/fd_tensor.h"
 | |
| #include "fastdeploy/function/sort.h"
 | |
| #include "glog/logging.h"
 | |
| #include "gtest_utils.h"
 | |
| #include "gtest/gtest.h"
 | |
| #include <array>
 | |
| #include <vector>
 | |
| 
 | |
| namespace fastdeploy {
 | |
| namespace function {
 | |
| 
 | |
| std::vector<float> CreateTestData() {
 | |
|   // Shape: [2, 3, 4]
 | |
|   std::vector<float> x_data = {
 | |
|       0.8428625,  0.6461913, 0.13740455, 0.11430702, 0.659926,  0.535816,
 | |
|       0.7429162,  0.8456049, 0.21228176, 0.29970083, 0.8621713, 0.40894133,
 | |
|       0.12684688, 0.1566195, 0.42884097, 0.8476526,  0.2458633, 0.669046,
 | |
|       0.87888306, 0.6762589, 0.666453,   0.32523027, 0.4139388, 0.8341406};
 | |
|   return x_data;
 | |
| }
 | |
| 
 | |
| TEST(fastdeploy, sort_dim0) {
 | |
|   CheckShape check_shape;
 | |
|   CheckData check_data;
 | |
|   FDTensor x, out, indices;
 | |
|   auto test_data = CreateTestData();
 | |
|   x.SetExternalData({2, 3, 4}, FDDataType::FP32, test_data.data());
 | |
| 
 | |
|   Sort(x, &out, &indices, 0);
 | |
| 
 | |
|   std::vector<float> out_result = {
 | |
|       0.126847, 0.15662,  0.137405, 0.114307, 0.245863, 0.535816,
 | |
|       0.742916, 0.676259, 0.212282, 0.299701, 0.413939, 0.408941,
 | |
|       0.842862, 0.646191, 0.428841, 0.847653, 0.659926, 0.669046,
 | |
|       0.878883, 0.845605, 0.666453, 0.32523,  0.862171, 0.834141};
 | |
|   std::vector<int64_t> indices_result = {1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0,
 | |
|                                          0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1};
 | |
|   check_shape(out.shape, {2, 3, 4});
 | |
|   check_data(reinterpret_cast<const float*>(out.Data()), out_result.data(),
 | |
|              out_result.size());
 | |
|   check_shape(indices.shape, {2, 3, 4});
 | |
|   check_data(reinterpret_cast<const int64_t*>(indices.Data()),
 | |
|              indices_result.data(), indices_result.size());
 | |
| }
 | |
| 
 | |
| TEST(fastdeploy, sort_dim1) {
 | |
|   CheckShape check_shape;
 | |
|   CheckData check_data;
 | |
|   FDTensor x, out, indices;
 | |
|   auto test_data = CreateTestData();
 | |
|   x.SetExternalData({2, 3, 4}, FDDataType::FP32, test_data.data());
 | |
| 
 | |
|   Sort(x, &out, &indices, 1);
 | |
| 
 | |
|   std::vector<float> out_result = {
 | |
|       0.212282, 0.299701, 0.137405, 0.114307, 0.659926, 0.535816,
 | |
|       0.742916, 0.408941, 0.842862, 0.646191, 0.862171, 0.845605,
 | |
|       0.126847, 0.15662,  0.413939, 0.676259, 0.245863, 0.32523,
 | |
|       0.428841, 0.834141, 0.666453, 0.669046, 0.878883, 0.847653};
 | |
|   std::vector<int64_t> indices_result = {2, 2, 0, 0, 1, 1, 1, 2, 0, 0, 2, 1,
 | |
|                                          0, 0, 2, 1, 1, 2, 0, 2, 2, 1, 1, 0};
 | |
|   check_shape(out.shape, {2, 3, 4});
 | |
|   check_data(reinterpret_cast<const float*>(out.Data()), out_result.data(),
 | |
|              out_result.size());
 | |
|   check_shape(indices.shape, {2, 3, 4});
 | |
|   check_data(reinterpret_cast<const int64_t*>(indices.Data()),
 | |
|              indices_result.data(), indices_result.size());
 | |
| }
 | |
| 
 | |
| TEST(fastdeploy, sort_dim2) {
 | |
|   CheckShape check_shape;
 | |
|   CheckData check_data;
 | |
|   FDTensor x, out, indices;
 | |
|   auto test_data = CreateTestData();
 | |
|   x.SetExternalData({2, 3, 4}, FDDataType::FP32, test_data.data());
 | |
| 
 | |
|   Sort(x, &out, &indices, 2);
 | |
| 
 | |
|   std::vector<float> out_result = {
 | |
|       0.114307, 0.137405, 0.646191, 0.842862, 0.535816, 0.659926,
 | |
|       0.742916, 0.845605, 0.212282, 0.299701, 0.408941, 0.862171,
 | |
|       0.126847, 0.15662,  0.428841, 0.847653, 0.245863, 0.669046,
 | |
|       0.676259, 0.878883, 0.32523,  0.413939, 0.666453, 0.834141};
 | |
|   std::vector<int64_t> indices_result = {3, 2, 1, 0, 1, 0, 2, 3, 0, 1, 3, 2,
 | |
|                                          0, 1, 2, 3, 0, 1, 3, 2, 1, 2, 0, 3};
 | |
|   check_shape(out.shape, {2, 3, 4});
 | |
|   check_data(reinterpret_cast<const float*>(out.Data()), out_result.data(),
 | |
|              out_result.size());
 | |
|   check_shape(indices.shape, {2, 3, 4});
 | |
|   check_data(reinterpret_cast<const int64_t*>(indices.Data()),
 | |
|              indices_result.data(), indices_result.size());
 | |
| }
 | |
| 
 | |
| }  // namespace function
 | |
| }  // namespace fastdeploy
 |