mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 20:02:53 +08:00 
			
		
		
		
	 291db315c8
			
		
	
	291db315c8
	
	
	
		
			
			* Update keypointdetection result docs * Update im.copy() to im in examples * Update new Api, fastdeploy::vision::Visualize to fastdeploy::vision * Update SwapBackgroundSegmentation && SwapBackgroundMatting to SwapBackground * Update README_CN.md * Update README_CN.md * Support set_model_buffer function
		
			
				
	
	
		
			533 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			533 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
		
			Executable File
		
	
	
	
	
| // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| /*! \file runtime.h
 | |
|     \brief A brief file description.
 | |
| 
 | |
|     More details
 | |
|  */
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <map>
 | |
| #include <vector>
 | |
| 
 | |
| #include "backends/rknpu/rknpu2/rknpu2_config.h"
 | |
| #include "fastdeploy/backends/backend.h"
 | |
| #include "fastdeploy/utils/perf.h"
 | |
| 
 | |
| /** \brief All C++ FastDeploy APIs are defined inside this namespace
 | |
| *
 | |
| */
 | |
| namespace fastdeploy {
 | |
| 
 | |
| /*! Inference backend supported in FastDeploy */
 | |
| enum Backend {
 | |
|   UNKNOWN,  ///< Unknown inference backend
 | |
|   ORT,  ///< ONNX Runtime, support Paddle/ONNX format model, CPU / Nvidia GPU
 | |
|   TRT,  ///< TensorRT, support Paddle/ONNX format model, Nvidia GPU only
 | |
|   PDINFER,  ///< Paddle Inference, support Paddle format model, CPU / Nvidia GPU
 | |
|   POROS,    ///< Poros, support TorchScript format model, CPU / Nvidia GPU
 | |
|   OPENVINO,  ///< Intel OpenVINO, support Paddle/ONNX format, CPU only
 | |
|   LITE,      ///< Paddle Lite, support Paddle format model, ARM CPU only
 | |
|   RKNPU2,    ///< RKNPU2, support RKNN format model, Rockchip NPU only
 | |
| };
 | |
| 
 | |
| FASTDEPLOY_DECL std::ostream& operator<<(std::ostream& out,
 | |
|                                          const Backend& backend);
 | |
| 
 | |
| /*! Paddle Lite power mode for mobile device. */
 | |
| enum LitePowerMode {
 | |
|   LITE_POWER_HIGH = 0,       ///< Use Lite Backend with high power mode
 | |
|   LITE_POWER_LOW = 1,        ///< Use Lite Backend with low power mode
 | |
|   LITE_POWER_FULL = 2,       ///< Use Lite Backend with full power mode
 | |
|   LITE_POWER_NO_BIND = 3,    ///< Use Lite Backend with no bind power mode
 | |
|   LITE_POWER_RAND_HIGH = 4,  ///< Use Lite Backend with rand high mode
 | |
|   LITE_POWER_RAND_LOW = 5    ///< Use Lite Backend with rand low power mode
 | |
| };
 | |
| 
 | |
| FASTDEPLOY_DECL std::string Str(const Backend& b);
 | |
| FASTDEPLOY_DECL std::string Str(const ModelFormat& f);
 | |
| 
 | |
| /**
 | |
|  * @brief Get all the available inference backend in FastDeploy
 | |
|  */
 | |
| FASTDEPLOY_DECL std::vector<Backend> GetAvailableBackends();
 | |
| 
 | |
| /**
 | |
|  * @brief Check if the inference backend available
 | |
|  */
 | |
| FASTDEPLOY_DECL bool IsBackendAvailable(const Backend& backend);
 | |
| 
 | |
| bool CheckModelFormat(const std::string& model_file,
 | |
|                       const ModelFormat& model_format);
 | |
| ModelFormat GuessModelFormat(const std::string& model_file);
 | |
| 
 | |
| /*! @brief Option object used when create a new Runtime object
 | |
|  */
 | |
| struct FASTDEPLOY_DECL RuntimeOption {
 | |
|   /** \brief Set path of model file and parameter file
 | |
|    *
 | |
|    * \param[in] model_path Path of model file, e.g ResNet50/model.pdmodel for Paddle format model / ResNet50/model.onnx for ONNX format model
 | |
|    * \param[in] params_path Path of parameter file, this only used when the model format is Paddle, e.g Resnet50/model.pdiparams
 | |
|    * \param[in] format Format of the loaded model
 | |
|    */
 | |
|   void SetModelPath(const std::string& model_path,
 | |
|                     const std::string& params_path = "",
 | |
|                     const ModelFormat& format = ModelFormat::PADDLE);
 | |
| 
 | |
|   /** \brief Specify the memory buffer of model and parameter. Used when model and params are loaded directly from memory
 | |
|    *
 | |
|    * \param[in] model_buffer The memory buffer of model
 | |
|    * \param[in] model_buffer_size The size of the model data
 | |
|    * \param[in] params_buffer The memory buffer of the combined parameters file
 | |
|    * \param[in] params_buffer_size The size of the combined parameters data
 | |
|    * \param[in] format Format of the loaded model
 | |
|    */
 | |
|   void SetModelBuffer(const char * model_buffer,
 | |
|                       size_t model_buffer_size,
 | |
|                       const char * params_buffer,
 | |
|                       size_t params_buffer_size,
 | |
|                       const ModelFormat& format = ModelFormat::PADDLE);
 | |
| 
 | |
|   /// Use cpu to inference, the runtime will inference on CPU by default
 | |
|   void UseCpu();
 | |
| 
 | |
|   /// Use Nvidia GPU to inference
 | |
|   void UseGpu(int gpu_id = 0);
 | |
| 
 | |
|   void UseRKNPU2(fastdeploy::rknpu2::CpuName rknpu2_name =
 | |
|                      fastdeploy::rknpu2::CpuName::RK3588,
 | |
|                  fastdeploy::rknpu2::CoreMask rknpu2_core =
 | |
|                      fastdeploy::rknpu2::CoreMask::RKNN_NPU_CORE_0);
 | |
| 
 | |
|   /// Use TimVX to inference
 | |
|   void UseTimVX();
 | |
| 
 | |
|   ///
 | |
|   /// \brief Turn on XPU.
 | |
|   ///
 | |
|   /// \param xpu_id the XPU card to use (default is 0).
 | |
|   /// \param l3_workspace_size The size of the video memory allocated by the l3
 | |
|   ///         cache, the maximum is 16M.
 | |
|   /// \param locked Whether the allocated L3 cache can be locked. If false,
 | |
|   ///       it means that the L3 cache is not locked, and the allocated L3
 | |
|   ///       cache can be shared by multiple models, and multiple models
 | |
|   ///       sharing the L3 cache will be executed sequentially on the card.
 | |
|   /// \param autotune Whether to autotune the conv operator in the model. If
 | |
|   ///       true, when the conv operator of a certain dimension is executed
 | |
|   ///       for the first time, it will automatically search for a better
 | |
|   ///       algorithm to improve the performance of subsequent conv operators
 | |
|   ///       of the same dimension.
 | |
|   /// \param autotune_file Specify the path of the autotune file. If
 | |
|   ///       autotune_file is specified, the algorithm specified in the
 | |
|   ///       file will be used and autotune will not be performed again.
 | |
|   /// \param precision Calculation accuracy of multi_encoder
 | |
|   /// \param adaptive_seqlen Is the input of multi_encoder variable length
 | |
|   /// \param enable_multi_stream Whether to enable the multi stream of xpu.
 | |
|   ///
 | |
|   void UseXpu(int xpu_id = 0,
 | |
|               int l3_workspace_size = 0xfffc00,
 | |
|               bool locked = false,
 | |
|               bool autotune = true,
 | |
|               const std::string& autotune_file = "",
 | |
|               const std::string& precision = "int16",
 | |
|               bool adaptive_seqlen = false,
 | |
|               bool enable_multi_stream = false);
 | |
| 
 | |
|   void SetExternalStream(void* external_stream);
 | |
| 
 | |
|   /*
 | |
|    * @brief Set number of cpu threads while inference on CPU, by default it will decided by the different backends
 | |
|    */
 | |
|   void SetCpuThreadNum(int thread_num);
 | |
| 
 | |
|   /// Set ORT graph opt level, default is decide by ONNX Runtime itself
 | |
|   void SetOrtGraphOptLevel(int level = -1);
 | |
| 
 | |
|   /// Set Paddle Inference as inference backend, support CPU/GPU
 | |
|   void UsePaddleBackend();
 | |
| 
 | |
|   /// Wrapper function of UsePaddleBackend()
 | |
|   void UsePaddleInferBackend() { return UsePaddleBackend(); }
 | |
| 
 | |
|   /// Set ONNX Runtime as inference backend, support CPU/GPU
 | |
|   void UseOrtBackend();
 | |
| 
 | |
|   /// Set TensorRT as inference backend, only support GPU
 | |
|   void UseTrtBackend();
 | |
| 
 | |
|   /// Set Poros backend as inference backend, support CPU/GPU
 | |
|   void UsePorosBackend();
 | |
| 
 | |
|   /// Set OpenVINO as inference backend, only support CPU
 | |
|   void UseOpenVINOBackend();
 | |
| 
 | |
|   /// Set Paddle Lite as inference backend, only support arm cpu
 | |
|   void UseLiteBackend();
 | |
| 
 | |
|   /// Wrapper function of UseLiteBackend()
 | |
|   void UsePaddleLiteBackend() { return UseLiteBackend(); }
 | |
| 
 | |
|   /// Set mkldnn switch while using Paddle Inference as inference backend
 | |
|   void SetPaddleMKLDNN(bool pd_mkldnn = true);
 | |
| 
 | |
|   /*
 | |
|    * @brief If TensorRT backend is used, EnablePaddleToTrt will change to use Paddle Inference backend, and use its integrated TensorRT instead.
 | |
|    */
 | |
|   void EnablePaddleToTrt();
 | |
| 
 | |
|   /**
 | |
|    * @brief Delete pass by name while using Paddle Inference as inference backend, this can be called multiple times to delete a set of passes
 | |
|    */
 | |
|   void DeletePaddleBackendPass(const std::string& delete_pass_name);
 | |
| 
 | |
|   /**
 | |
|    * @brief Enable print debug information while using Paddle Inference as inference backend, the backend disable the debug information by default
 | |
|    */
 | |
|   void EnablePaddleLogInfo();
 | |
| 
 | |
|   /**
 | |
|    * @brief Disable print debug information while using Paddle Inference as inference backend
 | |
|    */
 | |
|   void DisablePaddleLogInfo();
 | |
| 
 | |
|   /**
 | |
|    * @brief Set shape cache size while using Paddle Inference with mkldnn, by default it will cache all the difference shape
 | |
|    */
 | |
|   void SetPaddleMKLDNNCacheSize(int size);
 | |
| 
 | |
|   /**
 | |
|    * @brief Set device name for OpenVINO, default 'CPU', can also be 'AUTO', 'GPU', 'GPU.1'....
 | |
|    */
 | |
|   void SetOpenVINODevice(const std::string& name = "CPU");
 | |
| 
 | |
|   /**
 | |
|    * @brief Set shape info for OpenVINO
 | |
|    */
 | |
|   void SetOpenVINOShapeInfo(
 | |
|       const std::map<std::string, std::vector<int64_t>>& shape_info) {
 | |
|     ov_shape_infos = shape_info;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * @brief While use OpenVINO backend with intel GPU, use this interface to specify operators run on CPU
 | |
|    */
 | |
|   void SetOpenVINOCpuOperators(const std::vector<std::string>& operators) {
 | |
|     ov_cpu_operators = operators;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * @brief Set optimzed model dir for Paddle Lite backend.
 | |
|    */
 | |
|   void SetLiteOptimizedModelDir(const std::string& optimized_model_dir);
 | |
| 
 | |
|   /**
 | |
|    * @brief Set nnadapter subgraph partition path for Paddle Lite backend.
 | |
|    */
 | |
|   void SetLiteSubgraphPartitionPath(
 | |
|       const std::string& nnadapter_subgraph_partition_config_path);
 | |
| 
 | |
|   /**
 | |
|    * @brief enable half precision while use paddle lite backend
 | |
|    */
 | |
|   void EnableLiteFP16();
 | |
| 
 | |
|   /**
 | |
|    * @brief disable half precision, change to full precision(float32)
 | |
|    */
 | |
|   void DisableLiteFP16();
 | |
| 
 | |
|   /**
 | |
|     * @brief enable int8 precision while use paddle lite backend
 | |
|     */
 | |
|   void EnableLiteInt8();
 | |
| 
 | |
|   /**
 | |
|     * @brief disable int8 precision, change to full precision(float32)
 | |
|     */
 | |
|   void DisableLiteInt8();
 | |
| 
 | |
|   /**
 | |
|    * @brief Set power mode while using Paddle Lite as inference backend, mode(0: LITE_POWER_HIGH; 1: LITE_POWER_LOW; 2: LITE_POWER_FULL; 3: LITE_POWER_NO_BIND, 4: LITE_POWER_RAND_HIGH; 5: LITE_POWER_RAND_LOW, refer [paddle lite](https://paddle-lite.readthedocs.io/zh/latest/api_reference/cxx_api_doc.html#set-power-mode) for more details)
 | |
|    */
 | |
|   void SetLitePowerMode(LitePowerMode mode);
 | |
| 
 | |
|   /** \brief Set shape range of input tensor for the model that contain dynamic input shape while using TensorRT backend
 | |
|    *
 | |
|    * \param[in] input_name The name of input for the model which is dynamic shape
 | |
|    * \param[in] min_shape The minimal shape for the input tensor
 | |
|    * \param[in] opt_shape The optimized shape for the input tensor, just set the most common shape, if set as default value, it will keep same with min_shape
 | |
|    * \param[in] max_shape The maximum shape for the input tensor, if set as default value, it will keep same with min_shape
 | |
|    */
 | |
|   void SetTrtInputShape(
 | |
|       const std::string& input_name, const std::vector<int32_t>& min_shape,
 | |
|       const std::vector<int32_t>& opt_shape = std::vector<int32_t>(),
 | |
|       const std::vector<int32_t>& max_shape = std::vector<int32_t>());
 | |
| 
 | |
|   /// Set max_workspace_size for TensorRT, default 1<<30
 | |
|   void SetTrtMaxWorkspaceSize(size_t trt_max_workspace_size);
 | |
| 
 | |
|   /// Set max_batch_size for TensorRT, default 32
 | |
|   void SetTrtMaxBatchSize(size_t max_batch_size);
 | |
| 
 | |
|   /**
 | |
|    * @brief Enable FP16 inference while using TensorRT backend. Notice: not all the GPU device support FP16, on those device doesn't support FP16, FastDeploy will fallback to FP32 automaticly
 | |
|    */
 | |
|   void EnableTrtFP16();
 | |
| 
 | |
|   /// Disable FP16 inference while using TensorRT backend
 | |
|   void DisableTrtFP16();
 | |
| 
 | |
|   /**
 | |
|    * @brief Set cache file path while use TensorRT backend. Loadding a Paddle/ONNX model and initialize TensorRT will take a long time, by this interface it will save the tensorrt engine to `cache_file_path`, and load it directly while execute the code again
 | |
|    */
 | |
|   void SetTrtCacheFile(const std::string& cache_file_path);
 | |
| 
 | |
|   /**
 | |
|    * @brief Enable pinned memory. Pinned memory can be utilized to speedup the data transfer between CPU and GPU. Currently it's only suppurted in TRT backend and Paddle Inference backend.
 | |
|    */
 | |
|   void EnablePinnedMemory();
 | |
| 
 | |
|   /**
 | |
|    * @brief Disable pinned memory
 | |
|    */
 | |
|   void DisablePinnedMemory();
 | |
| 
 | |
|   /**
 | |
|    * @brief Enable to collect shape in paddle trt backend
 | |
|    */
 | |
|   void EnablePaddleTrtCollectShape();
 | |
| 
 | |
|   /**
 | |
|    * @brief Disable to collect shape in paddle trt backend
 | |
|    */
 | |
|   void DisablePaddleTrtCollectShape();
 | |
| 
 | |
|   /**
 | |
|    * @brief Prevent ops running in paddle trt backend
 | |
|    */
 | |
|   void DisablePaddleTrtOPs(const std::vector<std::string>& ops);
 | |
| 
 | |
|   /*
 | |
|    * @brief Set number of streams by the OpenVINO backends
 | |
|    */
 | |
|   void SetOpenVINOStreams(int num_streams);
 | |
| 
 | |
|   /** \Use Graphcore IPU to inference.
 | |
|    *
 | |
|    * \param[in] device_num the number of IPUs.
 | |
|    * \param[in] micro_batch_size the batch size in the graph, only work when graph has no batch shape info.
 | |
|    * \param[in] enable_pipelining enable pipelining.
 | |
|    * \param[in] batches_per_step the number of batches per run in pipelining.
 | |
|    */
 | |
|   void UseIpu(int device_num = 1, int micro_batch_size = 1,
 | |
|               bool enable_pipelining = false, int batches_per_step = 1);
 | |
| 
 | |
|   /** \brief Set IPU config.
 | |
|    *
 | |
|    * \param[in] enable_fp16 enable fp16.
 | |
|    * \param[in] replica_num the number of graph replication.
 | |
|    * \param[in] available_memory_proportion the available memory proportion for matmul/conv.
 | |
|    * \param[in] enable_half_partial enable fp16 partial for matmul, only work with fp16.
 | |
|    */
 | |
|   void SetIpuConfig(bool enable_fp16 = false, int replica_num = 1,
 | |
|                     float available_memory_proportion = 1.0,
 | |
|                     bool enable_half_partial = false);
 | |
| 
 | |
|   Backend backend = Backend::UNKNOWN;
 | |
|   // for cpu inference and preprocess
 | |
|   // default will let the backend choose their own default value
 | |
|   int cpu_thread_num = -1;
 | |
|   int device_id = 0;
 | |
| 
 | |
|   Device device = Device::CPU;
 | |
| 
 | |
|   void* external_stream_ = nullptr;
 | |
| 
 | |
|   bool enable_pinned_memory = false;
 | |
| 
 | |
|   // ======Only for ORT Backend========
 | |
|   // -1 means use default value by ort
 | |
|   // 0: ORT_DISABLE_ALL 1: ORT_ENABLE_BASIC 2: ORT_ENABLE_EXTENDED 3:
 | |
|   // ORT_ENABLE_ALL
 | |
|   int ort_graph_opt_level = -1;
 | |
|   int ort_inter_op_num_threads = -1;
 | |
|   // 0: ORT_SEQUENTIAL 1: ORT_PARALLEL
 | |
|   int ort_execution_mode = -1;
 | |
| 
 | |
|   // ======Only for Paddle Backend=====
 | |
|   bool pd_enable_mkldnn = true;
 | |
|   bool pd_enable_log_info = false;
 | |
|   bool pd_enable_trt = false;
 | |
|   bool pd_collect_shape = false;
 | |
|   int pd_mkldnn_cache_size = 1;
 | |
|   std::vector<std::string> pd_delete_pass_names;
 | |
| 
 | |
|   // ======Only for Paddle IPU Backend =======
 | |
|   int ipu_device_num = 1;
 | |
|   int ipu_micro_batch_size = 1;
 | |
|   bool ipu_enable_pipelining = false;
 | |
|   int ipu_batches_per_step = 1;
 | |
|   bool ipu_enable_fp16 = false;
 | |
|   int ipu_replica_num = 1;
 | |
|   float ipu_available_memory_proportion = 1.0;
 | |
|   bool ipu_enable_half_partial = false;
 | |
| 
 | |
|   // ======Only for Paddle Lite Backend=====
 | |
|   // 0: LITE_POWER_HIGH 1: LITE_POWER_LOW 2: LITE_POWER_FULL
 | |
|   // 3: LITE_POWER_NO_BIND 4: LITE_POWER_RAND_HIGH
 | |
|   // 5: LITE_POWER_RAND_LOW
 | |
|   LitePowerMode lite_power_mode = LitePowerMode::LITE_POWER_NO_BIND;
 | |
|   // enable int8 or not
 | |
|   bool lite_enable_int8 = false;
 | |
|   // enable fp16 or not
 | |
|   bool lite_enable_fp16 = false;
 | |
|   // optimized model dir for CxxConfig
 | |
|   std::string lite_optimized_model_dir = "";
 | |
|   std::string lite_nnadapter_subgraph_partition_config_path = "";
 | |
|   bool enable_timvx = false;
 | |
|   bool enable_xpu = false;
 | |
| 
 | |
|   // ======Only for Trt Backend=======
 | |
|   std::map<std::string, std::vector<int32_t>> trt_max_shape;
 | |
|   std::map<std::string, std::vector<int32_t>> trt_min_shape;
 | |
|   std::map<std::string, std::vector<int32_t>> trt_opt_shape;
 | |
|   std::string trt_serialize_file = "";
 | |
|   bool trt_enable_fp16 = false;
 | |
|   bool trt_enable_int8 = false;
 | |
|   size_t trt_max_batch_size = 1;
 | |
|   size_t trt_max_workspace_size = 1 << 30;
 | |
|   // ======Only for PaddleTrt Backend=======
 | |
|   std::vector<std::string> trt_disabled_ops_{};
 | |
| 
 | |
|   // ======Only for Poros Backend=======
 | |
|   bool is_dynamic = false;
 | |
|   bool long_to_int = true;
 | |
|   bool use_nvidia_tf32 = false;
 | |
|   int unconst_ops_thres = -1;
 | |
|   std::string poros_file = "";
 | |
| 
 | |
|   // ======Only for OpenVINO Backend=======
 | |
|   int ov_num_streams = 0;
 | |
|   std::string openvino_device = "CPU";
 | |
|   std::map<std::string, std::vector<int64_t>> ov_shape_infos;
 | |
|   std::vector<std::string> ov_cpu_operators;
 | |
| 
 | |
|   // ======Only for RKNPU2 Backend=======
 | |
|   fastdeploy::rknpu2::CpuName rknpu2_cpu_name_ =
 | |
|       fastdeploy::rknpu2::CpuName::RK3588;
 | |
|   fastdeploy::rknpu2::CoreMask rknpu2_core_mask_ =
 | |
|       fastdeploy::rknpu2::CoreMask::RKNN_NPU_CORE_AUTO;
 | |
| 
 | |
|   // ======Only for XPU Backend=======
 | |
|   int xpu_l3_workspace_size = 0xfffc00;
 | |
|   bool xpu_locked = false;
 | |
|   bool xpu_autotune = true;
 | |
|   std::string xpu_autotune_file = "";
 | |
|   std::string xpu_precision = "int16";
 | |
|   bool xpu_adaptive_seqlen = false;
 | |
|   bool xpu_enable_multi_stream = false;
 | |
| 
 | |
|   std::string model_file = "";   // Path of model file
 | |
|   std::string params_file = "";  // Path of parameters file, can be empty
 | |
|   // format of input model
 | |
|   ModelFormat model_format = ModelFormat::AUTOREC;
 | |
| 
 | |
|   std::string model_buffer_ = "";
 | |
|   std::string params_buffer_ = "";
 | |
|   size_t model_buffer_size_ = 0;
 | |
|   size_t params_buffer_size_ = 0;
 | |
|   bool model_from_memory_ = false;
 | |
| };
 | |
| 
 | |
| /*! @brief Runtime object used to inference the loaded model on different devices
 | |
|  */
 | |
| struct FASTDEPLOY_DECL Runtime {
 | |
|  public:
 | |
|   /// Intialize a Runtime object with RuntimeOption
 | |
|   bool Init(const RuntimeOption& _option);
 | |
| 
 | |
|   /** \brief Inference the model by the input data, and write to the output
 | |
|    *
 | |
|    * \param[in] input_tensors Notice the FDTensor::name should keep same with the model's input
 | |
|    * \param[in] output_tensors Inference results
 | |
|    * \return true if the inference successed, otherwise false
 | |
|    */
 | |
|   bool Infer(std::vector<FDTensor>& input_tensors,
 | |
|              std::vector<FDTensor>* output_tensors);
 | |
| 
 | |
|   /** \brief No params inference the model.
 | |
|    *
 | |
|    *  the input and output data need to pass through the BindInputTensor and GetOutputTensor interfaces.
 | |
|    */
 | |
|   bool Infer();
 | |
| 
 | |
|   /** \brief Compile TorchScript Module, only for Poros backend
 | |
|    *
 | |
|    * \param[in] prewarm_tensors Prewarm datas for compile
 | |
|    * \param[in] _option Runtime option
 | |
|    * \return true if compile successed, otherwise false
 | |
|    */
 | |
|   bool Compile(std::vector<std::vector<FDTensor>>& prewarm_tensors,
 | |
|                const RuntimeOption& _option);
 | |
| 
 | |
|   /** \brief Get number of inputs
 | |
|    */
 | |
|   int NumInputs() { return backend_->NumInputs(); }
 | |
|   /** \brief Get number of outputs
 | |
|    */
 | |
|   int NumOutputs() { return backend_->NumOutputs(); }
 | |
|   /** \brief Get input information by index
 | |
|    */
 | |
|   TensorInfo GetInputInfo(int index);
 | |
|   /** \brief Get output information by index
 | |
|    */
 | |
|   TensorInfo GetOutputInfo(int index);
 | |
|   /** \brief Get all the input information
 | |
|    */
 | |
|   std::vector<TensorInfo> GetInputInfos();
 | |
|   /** \brief Get all the output information
 | |
|    */
 | |
|   std::vector<TensorInfo> GetOutputInfos();
 | |
|   /** \brief Bind FDTensor by name, no copy and share input memory
 | |
|    */
 | |
|   void BindInputTensor(const std::string& name, FDTensor& input);
 | |
|   /** \brief Get output FDTensor by name, no copy and share backend output memory
 | |
|    */
 | |
|   FDTensor* GetOutputTensor(const std::string& name);
 | |
| 
 | |
|   /** \brief Clone new Runtime when multiple instances of the same model are created
 | |
|    *
 | |
|    * \param[in] stream CUDA Stream, defualt param is nullptr
 | |
|    * \return new Runtime* by this clone
 | |
|    */
 | |
|   Runtime* Clone(void* stream = nullptr, int device_id = -1);
 | |
| 
 | |
|   RuntimeOption option;
 | |
| 
 | |
|  private:
 | |
|   void CreateOrtBackend();
 | |
|   void CreatePaddleBackend();
 | |
|   void CreateTrtBackend();
 | |
|   void CreateOpenVINOBackend();
 | |
|   void CreateLiteBackend();
 | |
|   void CreateRKNPU2Backend();
 | |
|   std::unique_ptr<BaseBackend> backend_;
 | |
|   std::vector<FDTensor> input_tensors_;
 | |
|   std::vector<FDTensor> output_tensors_;
 | |
| };
 | |
| }  // namespace fastdeploy
 |