mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 20:02:53 +08:00 
			
		
		
		
	 c7dc7d5eee
			
		
	
	c7dc7d5eee
	
	
	
		
			
			* 更正代码格式 * 更正代码格式 * 修复语法错误 * fix rk error * update * update * update * update * update * update * update Co-authored-by: Jason <jiangjiajun@baidu.com>
		
			
				
	
	
		
			54 lines
		
	
	
		
			1.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			54 lines
		
	
	
		
			1.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
 | ||
| #
 | ||
| # Licensed under the Apache License, Version 2.0 (the "License");
 | ||
| # you may not use this file except in compliance with the License.
 | ||
| # You may obtain a copy of the License at
 | ||
| #
 | ||
| #     http://www.apache.org/licenses/LICENSE-2.0
 | ||
| #
 | ||
| # Unless required by applicable law or agreed to in writing, software
 | ||
| # distributed under the License is distributed on an "AS IS" BASIS,
 | ||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | ||
| # See the License for the specific language governing permissions and
 | ||
| # limitations under the License.
 | ||
| import fastdeploy as fd
 | ||
| import cv2
 | ||
| import os
 | ||
| 
 | ||
| 
 | ||
| def parse_arguments():
 | ||
|     import argparse
 | ||
|     import ast
 | ||
|     parser = argparse.ArgumentParser()
 | ||
|     parser.add_argument(
 | ||
|         "--model_file", required=True, help="Path of rknn model.")
 | ||
|     parser.add_argument(
 | ||
|         "--image", type=str, required=True, help="Path of test image file.")
 | ||
|     return parser.parse_args()
 | ||
| 
 | ||
| 
 | ||
| if __name__ == "__main__":
 | ||
|     args = parse_arguments()
 | ||
| 
 | ||
|     model_file = args.model_file
 | ||
|     params_file = ""
 | ||
| 
 | ||
|     # 配置runtime,加载模型
 | ||
|     runtime_option = fd.RuntimeOption()
 | ||
|     runtime_option.use_rknpu2()
 | ||
| 
 | ||
|     model = fd.vision.detection.RKYOLOV5(
 | ||
|         model_file,
 | ||
|         runtime_option=runtime_option,
 | ||
|         model_format=fd.ModelFormat.RKNN)
 | ||
| 
 | ||
|     # 预测图片分割结果
 | ||
|     im = cv2.imread(args.image)
 | ||
|     result = model.predict(im)
 | ||
|     print(result)
 | ||
| 
 | ||
|     # 可视化结果
 | ||
|     vis_im = fd.vision.vis_detection(im, result, score_threshold=0.5)
 | ||
|     cv2.imwrite("visualized_result.jpg", vis_im)
 | ||
|     print("Visualized result save in ./visualized_result.jpg")
 |