Files
FastDeploy/llm/server/server/http_server/api.py
2024-09-02 14:04:09 +08:00

163 lines
5.9 KiB
Python

# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import queue
import time
import uuid
from datetime import datetime
from functools import partial
from typing import Dict, List, Optional
import numpy as np
import tritonclient.grpc as grpcclient
from pydantic import BaseModel, Field
from tritonclient import utils as triton_utils
class Req(BaseModel):
req_id: str = Field(default_factory=lambda: str(uuid.uuid4()))
input_ids: Optional[List[int]] = None
text: Optional[str] = None
messages: Optional[List] = None
max_dec_len: Optional[int] = None
seq_len: Optional[int] = None
min_dec_len: Optional[int] = None
temperature: Optional[float] = None
topp: Optional[float] = None
penalty_score: Optional[float] = None
frequency_score: Optional[float] = None
presence_score: Optional[float] = None
system: Optional[str] = None
return_all_tokens: Optional[bool] = None
eos_token_ids: Optional[List[int]] = None
benchmark: bool = False
return_usage: Optional[bool] = False
stream: bool = False
timeout: int = 300
def to_dict_for_infer(self):
"""
Convert the request parameters into a dictionary
Returns:
dict: request parameters in dict format
"""
self.compatible_with_OpenAI()
req_dict = {}
for key, value in self.dict().items():
if value is not None:
req_dict[key] = value
return req_dict
def chat_completion_generator(infer_grpc_url: str, req: Req, yield_json: bool) -> Dict:
"""
Chat completion generator based on Triton inference service.
Args:
infer_grpc_url (str): Triton gRPC URL。
req (Request): request parameters
yield_json (bool): Whether to return the result in json format
Returns:
dict: chat completion result.
Normal, return {'token': xxx, 'is_end': xxx, 'send_idx': xxx, ..., 'error_msg': '', 'error_code': 0}
Others, return {'error_msg': xxx, 'error_code': xxx}, error_msg not None, error_code != 0
"""
class _TritonOutputData:
def __init__(self):
self._completed_requests = queue.Queue()
def _triton_callback(output_data, result, error):
"""Triton callback function"""
if error:
output_data._completed_requests.put(error)
else:
output_data._completed_requests.put(result)
def _format_resp(resp_dict):
if yield_json:
return json.dumps(resp_dict, ensure_ascii=False) + "\n"
else:
return resp_dict
timeout = req.timeout
req_id = req.req_id
req_dict = req.to_dict_for_infer()
http_received_time = datetime.now()
inputs = [grpcclient.InferInput("IN", [1], triton_utils.np_to_triton_dtype(np.object_))]
inputs[0].set_data_from_numpy(np.array([json.dumps([req_dict])], dtype=np.object_))
outputs = [grpcclient.InferRequestedOutput("OUT")]
output_data = _TritonOutputData()
with grpcclient.InferenceServerClient(url=infer_grpc_url, verbose=False) as triton_client:
triton_client.start_stream(callback=partial(_triton_callback, output_data))
triton_client.async_stream_infer(model_name="model",
inputs=inputs,
request_id=req_dict['req_id'],
outputs=outputs)
while True:
output_item = output_data._completed_requests.get(timeout=timeout)
if type(output_item) == triton_utils.InferenceServerException:
error_msg = f"status is {output_item.status()}, msg is {output_item.message()}"
yield _format_resp({"error_msg": error_msg, "error_code": 500})
break
else:
result = json.loads(output_item.as_numpy("OUT")[0])
result = result[0] if isinstance(result, list) else result
result["error_msg"] = result.get("error_msg", "")
result["error_code"] = result.get("error_code", 0)
if req.benchmark:
result["http_received_time"] = str(http_received_time)
yield _format_resp(result)
if (result.get("error_msg") or result.get("error_code")) or result.get("is_end") == 1:
break
triton_client.stop_stream()
triton_client.close()
def chat_completion_result(infer_grpc_url: str, req: Req) -> Dict:
"""
Chat completion result with not streaming mode
Args:
infer_grpc_url (str): Triton gRPC URL
req (Req): request parameters
Returns:
dict: chat completion result.
Normal, return {'tokens_all': xxx, ..., 'error_msg': '', 'error_code': 0}
Others, return {'error_msg': xxx, 'error_code': xxx}, error_msg not None, error_code != 0
"""
result = ""
error_resp = None
for resp in chat_completion_generator(infer_grpc_url, req, yield_json=False):
if resp.get("error_msg") or resp.get("error_code"):
error_resp = resp
error_resp["result"] = ""
else:
result += resp.get("token")
usage = resp.get("usage", None)
if error_resp:
return error_resp
response = {'result': result, 'error_msg': '', 'error_code': 0}
if req.return_usage:
response["usage"] = usage
return response