mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00
131 lines
4.3 KiB
Python
131 lines
4.3 KiB
Python
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import argparse
|
|
import queue
|
|
import sys
|
|
from functools import partial
|
|
|
|
import numpy as np
|
|
import tritonclient.grpc as grpcclient
|
|
from tritonclient.utils import *
|
|
|
|
FLAGS = None
|
|
|
|
|
|
class UserData:
|
|
def __init__(self):
|
|
self._completed_requests = queue.Queue()
|
|
|
|
|
|
# Define the callback function. Note the last two parameters should be
|
|
# result and error. InferenceServerClient would povide the results of an
|
|
# inference as grpcclient.InferResult in result. For successful
|
|
# inference, error will be None, otherwise it will be an object of
|
|
# tritonclientutils.InferenceServerException holding the error details
|
|
def callback(user_data, result, error):
|
|
if error:
|
|
user_data._completed_requests.put(error)
|
|
else:
|
|
user_data._completed_requests.put(result)
|
|
|
|
|
|
def async_stream_send(triton_client, values, request_id, model_name):
|
|
|
|
infer_inputs = []
|
|
outputs = []
|
|
for idx, data in enumerate(values):
|
|
data = np.array([data.encode('utf-8')], dtype=np.object_)
|
|
infer_input = grpcclient.InferInput('INPUT_0', [len(data)], "BYTES")
|
|
infer_input.set_data_from_numpy(data)
|
|
infer_inputs.append(infer_input)
|
|
|
|
outputs.append(grpcclient.InferRequestedOutput('OUTPUT_0'))
|
|
# Issue the asynchronous sequence inference.
|
|
triton_client.async_stream_infer(
|
|
model_name=model_name,
|
|
inputs=infer_inputs,
|
|
outputs=outputs,
|
|
request_id=request_id)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
'-v',
|
|
'--verbose',
|
|
action="store_true",
|
|
required=False,
|
|
default=False,
|
|
help='Enable verbose output')
|
|
parser.add_argument(
|
|
'-u',
|
|
'--url',
|
|
type=str,
|
|
required=False,
|
|
default='localhost:8001',
|
|
help='Inference server URL and it gRPC port. Default is localhost:8001.')
|
|
|
|
FLAGS = parser.parse_args()
|
|
|
|
# We use custom "sequence" models which take 1 input
|
|
# value. The output is the accumulated value of the inputs. See
|
|
# src/custom/sequence.
|
|
model_name = "streaming_pp_tts"
|
|
|
|
values = ["哈哈哈哈"]
|
|
|
|
request_id = "0"
|
|
|
|
string_result0_list = []
|
|
|
|
user_data = UserData()
|
|
|
|
# It is advisable to use client object within with..as clause
|
|
# when sending streaming requests. This ensures the client
|
|
# is closed when the block inside with exits.
|
|
with grpcclient.InferenceServerClient(
|
|
url=FLAGS.url, verbose=FLAGS.verbose) as triton_client:
|
|
try:
|
|
# Establish stream
|
|
triton_client.start_stream(callback=partial(callback, user_data))
|
|
# Now send the inference sequences...
|
|
async_stream_send(triton_client, values, request_id, model_name)
|
|
except InferenceServerException as error:
|
|
print(error)
|
|
sys.exit(1)
|
|
|
|
# Retrieve results...
|
|
recv_count = 0
|
|
result_dict = {}
|
|
status = True
|
|
while True:
|
|
data_item = user_data._completed_requests.get()
|
|
if type(data_item) == InferenceServerException:
|
|
raise data_item
|
|
else:
|
|
this_id = data_item.get_response().id
|
|
if this_id not in result_dict.keys():
|
|
result_dict[this_id] = []
|
|
result_dict[this_id].append((recv_count, data_item))
|
|
sub_wav = data_item.as_numpy('OUTPUT_0')
|
|
status = data_item.as_numpy('status')
|
|
print('sub_wav = ', sub_wav, "subwav.shape = ", sub_wav.shape)
|
|
print('status = ', status)
|
|
if status[0] == 1:
|
|
break
|
|
recv_count += 1
|
|
|
|
print("PASS: stream_client")
|