Files
FastDeploy/fastdeploy/runtime/backends/tensorrt/trt_backend.h
Jason 4aa4ebd7c3 [Other] [Part2] Upgrade runtime module (#1080)
[Other] Upgrade runtime module
2023-01-09 13:22:51 +08:00

153 lines
5.4 KiB
C++
Executable File

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <cuda_runtime_api.h>
#include <iostream>
#include <map>
#include <string>
#include <vector>
#include "NvInfer.h"
#include "NvOnnxParser.h"
#include "fastdeploy/runtime/backends/backend.h"
#include "fastdeploy/runtime/backends/tensorrt/utils.h"
#include "fastdeploy/runtime/backends/tensorrt/option.h"
#include "fastdeploy/utils/unique_ptr.h"
class Int8EntropyCalibrator2 : public nvinfer1::IInt8EntropyCalibrator2 {
public:
explicit Int8EntropyCalibrator2(const std::string& calibration_cache)
: calibration_cache_(calibration_cache) {}
int getBatchSize() const noexcept override { return 0; }
bool getBatch(void* bindings[], const char* names[],
int nbBindings) noexcept override {
return false;
}
const void* readCalibrationCache(size_t& length) noexcept override {
length = calibration_cache_.size();
return length ? calibration_cache_.data() : nullptr;
}
void writeCalibrationCache(const void* cache,
size_t length) noexcept override {
fastdeploy::FDERROR << "NOT IMPLEMENT." << std::endl;
}
private:
const std::string calibration_cache_;
};
namespace fastdeploy {
struct TrtValueInfo {
std::string name;
std::vector<int> shape;
nvinfer1::DataType dtype; // dtype of TRT model
FDDataType original_dtype; // dtype of original ONNX/Paddle model
};
std::vector<int> toVec(const nvinfer1::Dims& dim);
size_t TrtDataTypeSize(const nvinfer1::DataType& dtype);
FDDataType GetFDDataType(const nvinfer1::DataType& dtype);
class TrtBackend : public BaseBackend {
public:
TrtBackend() : engine_(nullptr), context_(nullptr) {}
void BuildOption(const TrtBackendOption& option);
bool InitFromPaddle(const std::string& model_file,
const std::string& params_file,
const TrtBackendOption& option = TrtBackendOption(),
bool verbose = false);
bool InitFromOnnx(const std::string& model_file,
const TrtBackendOption& option = TrtBackendOption(),
bool from_memory_buffer = false);
bool Infer(std::vector<FDTensor>& inputs, std::vector<FDTensor>* outputs,
bool copy_to_fd = true) override;
int NumInputs() const { return inputs_desc_.size(); }
int NumOutputs() const { return outputs_desc_.size(); }
TensorInfo GetInputInfo(int index);
TensorInfo GetOutputInfo(int index);
std::vector<TensorInfo> GetInputInfos() override;
std::vector<TensorInfo> GetOutputInfos() override;
std::unique_ptr<BaseBackend> Clone(void* stream = nullptr,
int device_id = -1) override;
~TrtBackend() {
if (parser_) {
parser_.reset();
}
}
private:
TrtBackendOption option_;
std::shared_ptr<nvinfer1::ICudaEngine> engine_;
std::shared_ptr<nvinfer1::IExecutionContext> context_;
FDUniquePtr<nvonnxparser::IParser> parser_;
FDUniquePtr<nvinfer1::IBuilder> builder_;
FDUniquePtr<nvinfer1::INetworkDefinition> network_;
cudaStream_t stream_{};
std::vector<void*> bindings_;
std::vector<TrtValueInfo> inputs_desc_;
std::vector<TrtValueInfo> outputs_desc_;
std::map<std::string, FDDeviceBuffer> inputs_device_buffer_;
std::map<std::string, FDDeviceBuffer> outputs_device_buffer_;
std::map<std::string, int> io_name_index_;
std::string calibration_str_;
bool save_external_ = false;
std::string model_file_name_ = "";
// Sometimes while the number of outputs > 1
// the output order of tensorrt may not be same
// with the original onnx model
// So this parameter will record to origin outputs
// order, to help recover the rigt order
std::map<std::string, int> outputs_order_;
// temporary store onnx model content
// once it used to build trt egnine done
// it will be released
std::string onnx_model_buffer_;
// Stores shape information of the loaded model
// For dynmaic shape will record its range information
// Also will update the range information while inferencing
std::map<std::string, ShapeRangeInfo> shape_range_info_;
// If the final output tensor's dtype is different from the
// model output tensor's dtype, then we need cast the data
// to the final output's dtype.
// E.g. When trt model output tensor is int32, but final tensor is int64
// This map stores the casted tensors.
std::map<std::string, FDTensor> casted_output_tensors_;
void GetInputOutputInfo();
bool CreateTrtEngineFromOnnx(const std::string& onnx_model_buffer);
bool BuildTrtEngine();
bool LoadTrtCache(const std::string& trt_engine_file);
int ShapeRangeInfoUpdated(const std::vector<FDTensor>& inputs);
void SetInputs(const std::vector<FDTensor>& inputs);
void AllocateOutputsBuffer(std::vector<FDTensor>* outputs,
bool copy_to_fd = true);
};
} // namespace fastdeploy