Files
FastDeploy/fastdeploy/runtime/backends/paddle/util.cc
DefTruth 49c033a828 [XPU] Support XPU via Paddle Inference backend (#1987)
* [backend] Support XPU via Paddle Inference backend

* [backend] Support XPU via Paddle Inference backend

* [backend] Support XPU via Paddle Inference backend

* [XPU] support XPU benchmark via paddle inference

* [XPU] support XPU benchmark via paddle inference

* [benchmark] add xpu paddle h2d config files
2023-05-25 14:13:40 +08:00

238 lines
8.9 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/core/float16.h"
#include "fastdeploy/runtime/backends/paddle/paddle_backend.h"
namespace fastdeploy {
paddle_infer::PlaceType ConvertFDDeviceToPlace(Device device) {
if (device == Device::GPU) {
return paddle_infer::PlaceType::kGPU;
} else if (device == Device::KUNLUNXIN) {
return paddle_infer::PlaceType::kXPU;
}
return paddle_infer::PlaceType::kCPU;
}
void ShareTensorFromFDTensor(paddle_infer::Tensor* tensor,
FDTensor& fd_tensor) {
std::vector<int> shape(fd_tensor.shape.begin(), fd_tensor.shape.end());
tensor->Reshape(shape);
auto place = ConvertFDDeviceToPlace(fd_tensor.device);
if (fd_tensor.dtype == FDDataType::FP32) {
if (place == paddle_infer::PlaceType::kGPU) {
tensor->ShareExternalData(static_cast<const float*>(fd_tensor.Data()),
shape, place);
} else {
tensor->CopyFromCpu(static_cast<const float*>(fd_tensor.Data()));
}
return;
} else if (fd_tensor.dtype == FDDataType::INT32) {
if (place == paddle_infer::PlaceType::kGPU) {
tensor->ShareExternalData(static_cast<const int32_t*>(fd_tensor.Data()),
shape, place);
} else {
tensor->CopyFromCpu(static_cast<const int32_t*>(fd_tensor.Data()));
}
return;
} else if (fd_tensor.dtype == FDDataType::INT64) {
if (place == paddle_infer::PlaceType::kGPU) {
tensor->ShareExternalData(static_cast<const int64_t*>(fd_tensor.Data()),
shape, place);
} else {
tensor->CopyFromCpu(static_cast<const int64_t*>(fd_tensor.Data()));
}
return;
} else if (fd_tensor.dtype == FDDataType::INT8) {
if (place == paddle_infer::PlaceType::kGPU) {
tensor->ShareExternalData(static_cast<const int8_t*>(fd_tensor.Data()),
shape, place);
} else {
tensor->CopyFromCpu(static_cast<const int8_t*>(fd_tensor.Data()));
}
return;
} else if (fd_tensor.dtype == FDDataType::UINT8) {
if (place == paddle_infer::PlaceType::kGPU) {
tensor->ShareExternalData(static_cast<const uint8_t*>(fd_tensor.Data()),
shape, place);
} else {
tensor->CopyFromCpu(static_cast<const uint8_t*>(fd_tensor.Data()));
}
return;
}
FDASSERT(false, "Unexpected data type(%s) while infer with PaddleBackend.",
Str(fd_tensor.dtype).c_str());
}
void ShareOutTensorFromFDTensor(paddle_infer::Tensor* tensor,
FDTensor& fd_tensor) {
std::vector<int> shape(fd_tensor.shape.begin(), fd_tensor.shape.end());
auto place = ConvertFDDeviceToPlace(fd_tensor.device);
if (fd_tensor.dtype == FDDataType::FP32) {
if (place == paddle_infer::PlaceType::kGPU) {
tensor->ShareExternalData(static_cast<float*>(fd_tensor.MutableData()),
shape, place);
} else {
tensor->CopyToCpu(static_cast<float*>(fd_tensor.MutableData()));
}
return;
} else if (fd_tensor.dtype == FDDataType::INT32) {
if (place == paddle_infer::PlaceType::kGPU) {
tensor->ShareExternalData(static_cast<int32_t*>(fd_tensor.MutableData()),
shape, place);
} else {
tensor->CopyToCpu(static_cast<int32_t*>(fd_tensor.MutableData()));
}
return;
} else if (fd_tensor.dtype == FDDataType::INT64) {
if (place == paddle_infer::PlaceType::kGPU) {
tensor->ShareExternalData(static_cast<int64_t*>(fd_tensor.MutableData()),
shape, place);
} else {
tensor->CopyToCpu(static_cast<int64_t*>(fd_tensor.MutableData()));
}
return;
} else if (fd_tensor.dtype == FDDataType::INT8) {
if (place == paddle_infer::PlaceType::kGPU) {
tensor->ShareExternalData(static_cast<const int8_t*>(fd_tensor.Data()),
shape, place);
} else {
tensor->CopyFromCpu(static_cast<const int8_t*>(fd_tensor.Data()));
}
return;
} else if (fd_tensor.dtype == FDDataType::UINT8) {
if (place == paddle_infer::PlaceType::kGPU) {
tensor->ShareExternalData(static_cast<const uint8_t*>(fd_tensor.Data()),
shape, place);
} else {
tensor->CopyFromCpu(static_cast<const uint8_t*>(fd_tensor.Data()));
}
return;
}
FDASSERT(false, "Unexpected data type(%s) while infer with PaddleBackend.",
Str(fd_tensor.dtype).c_str());
}
void PaddleTensorToFDTensor(std::unique_ptr<paddle_infer::Tensor>& tensor,
FDTensor* fd_tensor, bool copy_to_fd) {
auto fd_dtype = PaddleDataTypeToFD(tensor->type());
std::vector<int64_t> shape;
auto tmp_shape = tensor->shape();
shape.assign(tmp_shape.begin(), tmp_shape.end());
if (copy_to_fd) {
fd_tensor->Resize(shape, fd_dtype, tensor->name());
if (fd_tensor->dtype == FDDataType::FP32) {
tensor->CopyToCpu(static_cast<float*>(fd_tensor->MutableData()));
return;
} else if (fd_tensor->dtype == FDDataType::INT32) {
tensor->CopyToCpu(static_cast<int32_t*>(fd_tensor->MutableData()));
return;
} else if (fd_tensor->dtype == FDDataType::INT64) {
tensor->CopyToCpu(static_cast<int64_t*>(fd_tensor->MutableData()));
return;
} else if (fd_tensor->dtype == FDDataType::INT8) {
tensor->CopyToCpu(static_cast<int8_t*>(fd_tensor->MutableData()));
return;
} else if (fd_tensor->dtype == FDDataType::UINT8) {
tensor->CopyToCpu(static_cast<uint8_t*>(fd_tensor->MutableData()));
return;
}
FDASSERT(false, "Unexpected data type(%s) while infer with PaddleBackend.",
Str(fd_tensor->dtype).c_str());
} else {
paddle_infer::PlaceType place;
int size = 0;
// TODO(liqi): The tensor->data interface of paddle don't return device id
// and don't support return void*.
void* out_data = nullptr;
if (fd_dtype == FDDataType::FP32) {
out_data = tensor->data<float>(&place, &size);
} else if (fd_dtype == FDDataType::INT32) {
out_data = tensor->data<int>(&place, &size);
} else if (fd_dtype == FDDataType::INT64) {
out_data = tensor->data<int64_t>(&place, &size);
} else if (fd_dtype == FDDataType::INT8) {
out_data = tensor->data<int8_t>(&place, &size);
} else if (fd_dtype == FDDataType::UINT8) {
out_data = tensor->data<uint8_t>(&place, &size);
} else {
FDASSERT(
false,
"Unexpected data type(%s) while infer shared with PaddleBackend.",
Str(fd_dtype).c_str());
}
Device device = Device::CPU;
if (place == paddle_infer::PlaceType::kGPU) {
device = Device::GPU;
} else if (place == paddle_infer::PlaceType::kXPU) {
device = Device::KUNLUNXIN;
FDASSERT(false,
"Currently, copy_to_fd=false, FDTensor SetExternalData "
"is not support for Device::KUNLUNXIN now!")
}
fd_tensor->name = tensor->name();
fd_tensor->SetExternalData(shape, fd_dtype, out_data, device);
}
}
FDDataType PaddleDataTypeToFD(const paddle_infer::DataType& dtype) {
auto fd_dtype = FDDataType::FP32;
if (dtype == paddle_infer::FLOAT32) {
fd_dtype = FDDataType::FP32;
} else if (dtype == paddle_infer::INT64) {
fd_dtype = FDDataType::INT64;
} else if (dtype == paddle_infer::INT32) {
fd_dtype = FDDataType::INT32;
} else if (dtype == paddle_infer::UINT8) {
fd_dtype = FDDataType::UINT8;
} else if (dtype == paddle_infer::INT8) {
fd_dtype = FDDataType::INT8;
} else if (dtype == paddle_infer::FLOAT16) {
fd_dtype = FDDataType::FP16;
} else {
FDASSERT(
false,
"Unexpected data type: %d while call CopyTensorToCpu in PaddleBackend.",
int(dtype));
}
return fd_dtype;
}
FDDataType ReaderDataTypeToFD(int32_t dtype) {
auto fd_dtype = FDDataType::FP32;
if (dtype == 0) {
fd_dtype = FDDataType::FP32;
} else if (dtype == 1) {
fd_dtype = FDDataType::FP64;
} else if (dtype == 2) {
fd_dtype = FDDataType::UINT8;
} else if (dtype == 3) {
fd_dtype = FDDataType::INT8;
} else if (dtype == 4) {
fd_dtype = FDDataType::INT32;
} else if (dtype == 5) {
fd_dtype = FDDataType::INT64;
} else if (dtype == 6) {
fd_dtype = FDDataType::FP16;
} else {
FDASSERT(false,
"Unexpected data type: %d while call ReaderDataTypeToFD in "
"PaddleBackend.",
dtype);
}
return fd_dtype;
}
} // namespace fastdeploy