Files
FastDeploy/examples/multimodal/stable_diffusion/cpp/pipeline_stable_diffusion_inpaint.h
Jack Zhou d74e1209ae [Diffusion] Add StableDiffusionInpaint pipeline (#760)
* Update Inpaint pipeline

* Update concat

* Add GaussianRandomKernel

* Update GaussianRandom

* Add vae endoder

* Add unet infer

* Add vae decoder predict

* add PrepareMaskAndMaskedImage

* Add imwrite

* Add time counter

* Fix pipeline

* use FDTensor move

* Fix scaled_linear dpm solver

* Add RGB2BGR
2022-12-02 19:30:32 +08:00

62 lines
2.4 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "./scheduler.h"
#include "fast_tokenizer/tokenizers/clip_fast_tokenizer.h"
#include "fastdeploy/core/fd_tensor.h"
#include "fastdeploy/runtime.h"
#include "opencv2/core/core.hpp"
#include <memory>
#include <string>
#include <vector>
namespace fastdeploy {
class StableDiffusionInpaintPipeline {
public:
typedef void (*callback_ptr)(int, int, FDTensor*);
StableDiffusionInpaintPipeline(
std::unique_ptr<Runtime> vae_encoder,
std::unique_ptr<Runtime> vae_decoder,
std::unique_ptr<Runtime> text_encoder, std::unique_ptr<Runtime> unet,
std::unique_ptr<Scheduler> scheduler,
const paddlenlp::fast_tokenizer::tokenizers_impl::ClipFastTokenizer&
tokenizer);
void Predict(const std::vector<std::string>& prompts, const cv::Mat& image,
const cv::Mat& mask_image, std::vector<FDTensor>* output_images,
int height = 512, int width = 512, int num_inference_steps = 50,
float guidance_scale = 7.5,
const std::vector<std::string>& negative_prompt = {},
int num_images_per_prompt = 1, float eta = 0.0,
uint32_t max_length = 77, const FDTensor* latents = nullptr,
bool output_cv_mat = true, callback_ptr callback = nullptr,
int callback_steps = 1);
private:
void PrepareMaskAndMaskedImage(const cv::Mat& image, const cv::Mat& mask_mat,
const std::vector<int64_t>& shape,
FDTensor* mask, FDTensor* mask_image);
std::unique_ptr<Runtime> vae_encoder_;
std::unique_ptr<Runtime> vae_decoder_;
std::unique_ptr<Runtime> text_encoder_;
std::unique_ptr<Runtime> unet_;
std::unique_ptr<Scheduler> scheduler_;
paddlenlp::fast_tokenizer::tokenizers_impl::ClipFastTokenizer tokenizer_;
};
} // namespace fastdeploy