Files
FastDeploy/fastdeploy/model_executor/graph_optimization/graph_optimization_backend.py
Nyakku Shigure 48e6a0ca26
Some checks failed
Deploy GitHub Pages / deploy (push) Has been cancelled
[SOT] Mark dynamic dims by type annotations (#2771)
* [SOT] Mark dynamic dims by type annotations

* fix conflict of forward_meta

* mark more attn backend

* fix missing annotated and add env SOT_SPECIALIZED_DIM_NUMBERS

* auto infer implicit 0 dim dynamic dim

* revert manual marked dims

* revert missing update

* auto infer can use unsafe code in warmup stage

* check -> type_match

* fix codestyle

* restore blank line

* empty commit

* add need_warmup nonlocal;

* add doc for resolver

* add missing type hints

* unquote "ForwardMeta"
2025-07-22 00:23:52 -07:00

156 lines
5.6 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import functools
import inspect
import types
from typing import Callable, Optional, TypeVar, get_type_hints
from paddle.jit import sot
from paddle.jit.dy2static.utils import Backend as ToStaticBackend
from paddleformers.utils.log import logger
from typing_extensions import ParamSpec
from fastdeploy.config import FDConfig
from fastdeploy.model_executor.graph_optimization.cudagraph_piecewise_backend import (
CudaGraphPiecewiseBackend,
)
from fastdeploy.model_executor.graph_optimization.dynamic_dims_marker import (
resolve_dynamic_dims,
)
P = ParamSpec("P")
T = TypeVar("T")
# TODO(SigureMo): Replace this fn with real implementation by DrRyanHuang
def create_in_warmup_mode():
cnt = 0
def in_warmup_mode():
nonlocal cnt
cnt += 1
return cnt < 32
return in_warmup_mode
in_warmup_mode = create_in_warmup_mode()
def apply_to_static_optimization(fn: Callable[P, T], backend: ToStaticBackend) -> Callable[P, T]:
forward_fn = fn
forward_sig = inspect.signature(forward_fn)
forward_type_hints = get_type_hints(forward_fn)
static_forward_fn = sot.symbolic_translate(forward_fn, training=False, backend=backend)
unsafe_static_forward_fn = None
need_warmup = True
@functools.wraps(forward_fn)
def warmup_impl(self, *args, **kwargs):
nonlocal unsafe_static_forward_fn, need_warmup
bound_args = forward_sig.bind(self, *args, **kwargs)
bound_args.apply_defaults()
for name, arg in bound_args.arguments.items():
if name not in forward_type_hints:
continue
annotation = forward_type_hints[name]
resolve_dynamic_dims(arg, name, annotation)
result = static_forward_fn(self, *args, **kwargs)
original_code = forward_fn.__code__
(new_guarded_codes, _) = sot.opcode_translator.executor.executor_cache.OpcodeExecutorCache().cache[
original_code
]
# Check has only one graph
if len(new_guarded_codes) > 1:
logger.warning("Model has multiple generated code, please check all dynamic dim has marked.")
unsafe_static_forward_fn = None
need_warmup = False
return result
# Check generated code has no break graph
new_code = new_guarded_codes[0][0][0]
if any(name.startswith("$") for name in new_code.co_names): # TODO(SigureMo): It's a internal impl
logger.warning("Model has breakgraph, please set env SOT_LOG_LEVEL=3 to check it.")
unsafe_static_forward_fn = None
need_warmup = False
return result
unsafe_static_forward_fn = types.FunctionType(
new_code,
forward_fn.__globals__,
forward_fn.__name__,
forward_fn.__defaults__,
forward_fn.__closure__,
)
return result
@functools.wraps(forward_fn)
def static_forward(self, *args, **kwargs):
nonlocal need_warmup
is_warmup = in_warmup_mode() and need_warmup
if is_warmup:
return warmup_impl(self, *args, **kwargs)
nonlocal unsafe_static_forward_fn
if unsafe_static_forward_fn is None:
return static_forward_fn(self, *args, **kwargs)
return unsafe_static_forward_fn(self, *args, **kwargs)
return static_forward
class GraphOptBackend:
"""
Integrated various graph optimization functions, including dynamic graph to static graph conversion,
CINN compilation optimization, CudaGraph, and so on.
"""
fd_config: FDConfig
cudagraph_piecewise_backend: Optional[CudaGraphPiecewiseBackend] = None
def __init__(self, runnable: Callable, fd_config: FDConfig):
self.runnable = runnable
self.fd_config = fd_config
self.max_captre_batch = fd_config.graph_opt_config.cudagraph_capture_sizes[0]
if self.fd_config.graph_opt_config.graph_opt_level > 0:
# 1. Prepare cuda grpah input buffers (contain output of subgraphs)
# 2. Convert dynamic grpah to static graph
backend = (
ToStaticBackend.CINN if self.fd_config.graph_opt_config.graph_opt_level > 1 else ToStaticBackend.PHI
)
self.runnable = apply_to_static_optimization(
self.runnable.__func__,
backend,
).__get__(self.runnable.__self__)
def __call__(self, **kwargs):
if not self.fd_config.graph_opt_config.use_cudagraph:
return self.runnable(**kwargs)
if self.cudagraph_piecewise_backend is None:
self.cudagraph_piecewise_backend = CudaGraphPiecewiseBackend(
fd_config=self.fd_config, runnable=self.runnable
)
assert kwargs["forward_meta"].ids_remove_padding is not None
batch_size = kwargs["forward_meta"].ids_remove_padding.shape[0]
if (not kwargs["forward_meta"].step_use_cudagraph) or (batch_size > self.max_captre_batch):
return self.runnable(**kwargs)
else:
return self.cudagraph_piecewise_backend.__call__(**kwargs)