Files
FastDeploy/fastdeploy/model_executor/layers/quantization/w8a8.py
2025-09-03 10:57:26 +08:00

178 lines
6.2 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
from typing import Optional
import paddle
from paddleformers.utils.log import logger
import fastdeploy
from fastdeploy.platforms.utils import convert_to_npu_dequant_scale
from ..utils import get_tensor
from .quant_base import QuantConfigBase, QuantMethodBase
class W8A8Config(QuantConfigBase):
"""
quantization config for weight 8bits and activation 8bits
"""
def __init__(
self,
weight_scale_dict,
act_scale_dict,
use_gemm_dequant,
use_smooth_quant,
) -> None:
super().__init__()
self.weight_scale_dict = weight_scale_dict
self.act_scale_dict = act_scale_dict
self.use_gemm_dequant = use_gemm_dequant
self.use_smooth_quant = use_smooth_quant
self.quant_max_bound = 127
self.quant_min_bound = -127
self.quant_round_type = 0
def name(self) -> str:
return "w8a8"
@classmethod
def from_config(cls, config: dict) -> "W8A8Config":
weight_scale_dict = config["weight_scale_dict"]
act_scale_dict = config["act_scale_dict"]
use_gemm_dequant = config["use_gemm_dequant"]
return cls(weight_scale_dict, act_scale_dict, use_gemm_dequant)
def get_quant_method(self, layer) -> Optional[QuantMethodBase]:
return W8A8LinearMethod(self)
class W8A8LinearMethod(QuantMethodBase):
"""
quantization method for weight 8bits and activation 8bits of linear layer
"""
def __init__(
self,
quant_config: W8A8Config,
) -> None:
super().__init__()
self.quant_config = quant_config
self.smooth_quant_method = SmoothQuantLinearMethod(quant_config)
def create_weights(self, layer, **extra_weight_attrs):
layer.weight_shape.reverse()
layer.weight_dtype = "int8"
if self.quant_config.use_smooth_quant:
self.smooth_quant_method.create_weights(layer)
weight_scale = self.quant_config.weight_scale_dict.get(layer.prefix + ".weight_scale")
in_scale = self.quant_config.act_scale_dict.get(layer.prefix + ".activation_scale")
self.skip_quant = False
if weight_scale is None or in_scale is None:
self.skip_quant = True
return
layer.weight = layer.create_parameter(
shape=layer.weight_shape,
dtype=layer.weight_dtype,
is_bias=False,
default_initializer=paddle.nn.initializer.Constant(0),
)
max_range = 127.0
linear_out_scale = paddle.to_tensor(weight_scale / (max_range * max_range * in_scale)).astype("float32")
layer.linear_out_scale = layer.create_parameter(
shape=[layer.embed_dim],
dtype="float32",
is_bias=False,
default_initializer=paddle.nn.initializer.Constant(0),
)
layer.linear_out_scale.set_value(convert_to_npu_dequant_scale(linear_out_scale))
def process_loaded_weights(self, layer, weights) -> None:
if self.quant_config.use_smooth_quant:
self.smooth_quant_method.process_loaded_weights(layer, weights)
if self.skip_quant:
logger.debug(f"{layer.prefix} skip quant")
weight_tensor = weights.cast(layer._dtype)
layer.weight.set_value(weight_tensor)
else:
weight_tensor = weights.transpose([1, 0])
weight_tensor = paddle.cast(weight_tensor, "int8")
layer.weight.set_value(weight_tensor)
def apply(self, layer, x):
if self.skip_quant:
linear_out = paddle.matmul(x, layer.weight, False, True)
return linear_out
if self.quant_config.use_gemm_dequant:
linear_out = fastdeploy.model_executor.ops.gpu.gemm_dequant(
x, layer.weight, layer.linear_out_scale, layer._dtype
)
else:
linear_out = paddle.matmul(x, layer.weight, False, True)
linear_out = fastdeploy.model_executor.ops.gpu.dequant_int8(
linear_out, layer.linear_out_scale, layer._dtype
)
return linear_out
class SmoothQuantLinearMethod(QuantMethodBase):
"""
SmoothQuant Method
"""
def __init__(
self,
quant_config: QuantConfigBase,
) -> None:
super().__init__()
self.quant_config = quant_config
def create_weights(self, layer, **extra_weight_attrs):
linear_shift_shape = [layer.output_size]
linear_smooth_shape = [layer.output_size]
layer.linear_shift = self.create_parameter(
shape=linear_shift_shape,
dtype=layer._dtype,
is_bias=False,
)
layer.linear_smooth = layer.create_parameter(
shape=linear_smooth_shape,
dtype=layer._dtype,
is_bias=False,
)
def process_loaded_weights(self, layer, weights) -> None:
if layer.shift_key in layer.state_dict:
shift_tensor = get_tensor(layer.state_dict.pop(layer.shift_key)).astype(paddle.get_default_dtype())
else:
shift_tensor = paddle.zeros(
shape=layer.linear_shift_shape,
dtype=paddle.get_default_dtype(),
)
layer.linear_shift.set_value(shift_tensor)
if layer.smooth_key in layer.state_dict:
smooth_tensor = get_tensor(layer.state_dict.pop(layer.smooth_key)).astype(paddle.get_default_dtype())
else:
smooth_tensor = paddle.ones(
shape=[layer.linear_smooth_shape],
dtype=paddle.get_default_dtype(),
)
layer.linear_smooth.set_value(smooth_tensor)
def apply(self, layer, x):
pass