Files
FastDeploy/fastdeploy/model_executor/layers/quantization/kv_cache.py
YuanRisheng b3fac5bde1
Some checks failed
CE Compile Job / ce_job_pre_check (push) Has been cancelled
CE Compile Job / print_ce_job_pre_check_outputs (push) Has been cancelled
CE Compile Job / FD-Clone-Linux (push) Has been cancelled
CE Compile Job / Show Code Archive Output (push) Has been cancelled
CE Compile Job / BUILD_SM8090 (push) Has been cancelled
CE Compile Job / BUILD_SM8689 (push) Has been cancelled
CE Compile Job / CE_UPLOAD (push) Has been cancelled
Deploy GitHub Pages / deploy (push) Has been cancelled
Publish Job / publish_pre_check (push) Has been cancelled
Publish Job / print_publish_pre_check_outputs (push) Has been cancelled
Publish Job / FD-Clone-Linux (push) Has been cancelled
Publish Job / Show Code Archive Output (push) Has been cancelled
Publish Job / BUILD_SM8090 (push) Has been cancelled
Publish Job / BUILD_SM8689 (push) Has been cancelled
Publish Job / PADDLE_PYPI_UPLOAD_8090 (push) Has been cancelled
Publish Job / PADDLE_PYPI_UPLOAD_8689 (push) Has been cancelled
Publish Job / Run FastDeploy Unit Tests and Coverage (push) Has been cancelled
Publish Job / Run FastDeploy LogProb Tests (push) Has been cancelled
Publish Job / Extracted partial CE model tasks to run in CI. (push) Has been cancelled
Publish Job / Run Base Tests (push) Has been cancelled
Publish Job / Run Accuracy Tests (push) Has been cancelled
Publish Job / Run Stable Tests (push) Has been cancelled
CI Images Build / FD-Clone-Linux (push) Has been cancelled
CI Images Build / Show Code Archive Output (push) Has been cancelled
CI Images Build / CI Images Build (push) Has been cancelled
CI Images Build / BUILD_SM8090 (push) Has been cancelled
CI Images Build / Run FastDeploy Unit Tests and Coverage (push) Has been cancelled
CI Images Build / Run FastDeploy LogProb Tests (push) Has been cancelled
CI Images Build / Extracted partial CE model tasks to run in CI. (push) Has been cancelled
CI Images Build / Run Base Tests (push) Has been cancelled
CI Images Build / Run Accuracy Tests (push) Has been cancelled
CI Images Build / Run Stable Tests (push) Has been cancelled
CI Images Build / Publish Docker Images Pre Check (push) Has been cancelled
[V1 Loader] Ernie kv cache quant support v1 loader (#3899)
* support c8 for ernie

* add unittest

* support vl

* fix c8
2025-09-09 05:25:08 -07:00

276 lines
9.7 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
from enum import Enum
from typing import Optional
import paddle
from paddle import nn
from fastdeploy.model_executor.layers.utils import get_tensor
from fastdeploy.model_executor.utils import set_weight_attrs
from .quant_base import QuantConfigBase, QuantMethodBase
class KvCacheQuantzationTypes(str, Enum):
"""
KvCacheQuantzationTypes
"""
INT8 = "int8"
FP8 = "float8_e4m3fn"
BLOCK_WISE_FP8 = "block_wise_fp8"
INT8_ZP = "int8_zp"
INT4_ZP = "int4_zp"
FP8_ZP = "float8_e4m3fn_zp"
class KvCacheQuantConfig(QuantConfigBase):
"""
quantization config for weight 4bits and activation fp8
"""
def __init__(self, kv_cache_quant_type: str, is_channel_wise: bool, has_zero_point: bool) -> None:
"""
__init__
"""
super().__init__()
self.kv_cache_quant_type = kv_cache_quant_type
self.is_channel_wise = is_channel_wise
self.has_zero_point = has_zero_point
try:
self.quant_type = KvCacheQuantzationTypes(kv_cache_quant_type)
except ValueError:
raise ValueError(f"Invalid Kvcache type: {kv_cache_quant_type}")
if "zp" in kv_cache_quant_type:
self.has_zero_point = True
if self.quant_type == KvCacheQuantzationTypes.INT8 or self.quant_type == KvCacheQuantzationTypes.INT8_ZP:
self.max_bound = 127.0
elif (
self.quant_type == KvCacheQuantzationTypes.FP8
or self.quant_type == KvCacheQuantzationTypes.FP8_ZP
or self.quant_type == KvCacheQuantzationTypes.BLOCK_WISE_FP8
):
self.max_bound = 448.0
elif self.quant_type == KvCacheQuantzationTypes.INT4_ZP:
self.max_bound = 7.0
else:
raise ValueError(f"Invalid Kvcache type: {kv_cache_quant_type}")
def name(self) -> str:
"""
get_name
"""
return "kvcache"
@classmethod
def from_config(
cls, kv_cache_quant_type: str, is_channel_wise: bool, has_zero_point: bool
) -> "KvCacheQuantConfig":
"""
from_config
"""
return cls(kv_cache_quant_type, is_channel_wise, has_zero_point)
def get_quant_method(self, layer) -> Optional[QuantMethodBase]:
"""
get_quant_method
"""
return KVCacheMethodBase(self)
class KVCacheMethodBase(QuantMethodBase):
"""
KVCacheMethodBase
"""
def __init__(
self,
quant_config: KvCacheQuantConfig,
) -> None:
"""
KVCacheMethodBase __init__
"""
super().__init__()
self.cache_quant_config = quant_config
def load_zp(self, layer: nn.Layer, state_dict):
"""
load_zp
"""
cache_k_zeropoint = get_tensor(state_dict.pop(self.cache_k_zp_name)).cast(paddle.get_default_dtype())
cache_v_zeropoint = get_tensor(state_dict.pop(self.cache_v_zp_name)).cast(paddle.get_default_dtype())
layer.cache_k_zp.set_value(cache_k_zeropoint)
layer.cache_v_zp.set_value(cache_v_zeropoint)
def load_scale(self, layer: nn.Layer, state_dict):
"""
load_scale
"""
if self.cache_quant_config.is_channel_wise:
cache_k_scale_tensor = (
get_tensor(state_dict.pop(self.cache_k_scale_name))
.cast(paddle.get_default_dtype())
.reshape_([-1, layer.head_dim])
)
cache_v_scale_tensor = (
get_tensor(state_dict.pop(self.cache_v_scale_name))
.cast(paddle.get_default_dtype())
.reshape_([-1, layer.head_dim])
)
else:
cache_k_scale_tensor = (
get_tensor(state_dict.pop(self.cache_k_scale_name)).cast(paddle.get_default_dtype()).reshape_([-1])
)
cache_v_scale_tensor = (
get_tensor(state_dict.pop(self.cache_v_scale_name)).cast(paddle.get_default_dtype()).reshape_([-1])
)
if self.cache_quant_config.has_zero_point: # cache_int4_zp
cache_k_scale = 1.0 / cache_k_scale_tensor
cache_v_scale = 1.0 / cache_v_scale_tensor
cache_k_out_scale = cache_k_scale_tensor
cache_v_out_scale = cache_v_scale_tensor
else:
cache_k_scale = self.cache_quant_config.max_bound / cache_k_scale_tensor
cache_v_scale = self.cache_quant_config.max_bound / cache_v_scale_tensor
cache_k_out_scale = cache_k_scale_tensor / self.cache_quant_config.max_bound
cache_v_out_scale = cache_v_scale_tensor / self.cache_quant_config.max_bound
layer.cache_k_scale.set_value(cache_k_scale)
layer.cache_v_scale.set_value(cache_v_scale)
layer.cache_k_out_scale.set_value(cache_k_out_scale)
layer.cache_v_out_scale.set_value(cache_v_out_scale)
def create_weights(self, layer: nn.Layer, **extra_weight_attrs):
"""
create_weights
"""
if self.cache_quant_config.quant_type == KvCacheQuantzationTypes.INT8:
layer.cache_quant_type_str = "cache_int8"
layer.quant_max_bound = 127.0
layer.quant_min_bound = -127.0
elif self.cache_quant_config.quant_type == KvCacheQuantzationTypes.FP8:
layer.cache_quant_type_str = "cache_fp8"
layer.quant_max_bound = 448.0
layer.quant_min_bound = -448.0
elif self.cache_quant_config.quant_type == KvCacheQuantzationTypes.INT4_ZP:
layer.cache_quant_type_str = "cache_int4_zp"
layer.quant_max_bound = 7.0
layer.quant_min_bound = -7.0
elif self.cache_quant_config.quant_type == KvCacheQuantzationTypes.BLOCK_WISE_FP8:
layer.cache_quant_type_str = "block_wise_fp8"
layer.quant_max_bound = 448.0
layer.quant_min_bound = -448.0
else:
raise NotImplementedError(f"{self.cache_quant_config.quant_type} is not implemented")
scale_shape = [layer.fd_config.model_config.num_key_value_heads]
if self.cache_quant_config.is_channel_wise:
scale_shape = [layer.fd_config.model_config.num_key_value_heads, layer.head_dim]
layer.cache_k_scale = layer.create_parameter(
shape=scale_shape,
dtype=paddle.get_default_dtype(),
default_initializer=paddle.nn.initializer.Constant(0),
)
layer.cache_v_scale = layer.create_parameter(
shape=scale_shape,
dtype=paddle.get_default_dtype(),
default_initializer=paddle.nn.initializer.Constant(0),
)
set_weight_attrs(
layer.cache_k_scale,
{
**extra_weight_attrs,
},
)
set_weight_attrs(
layer.cache_v_scale,
{
**extra_weight_attrs,
},
)
layer.cache_k_out_scale = layer.create_parameter(
shape=scale_shape,
dtype=paddle.get_default_dtype(),
default_initializer=paddle.nn.initializer.Constant(0),
)
layer.cache_v_out_scale = layer.create_parameter(
shape=scale_shape,
dtype=paddle.get_default_dtype(),
default_initializer=paddle.nn.initializer.Constant(0),
)
if self.cache_quant_config.has_zero_point:
layer.cache_k_zp = layer.create_parameter(
shape=scale_shape,
dtype=paddle.get_default_dtype(),
default_initializer=paddle.nn.initializer.Constant(0),
)
layer.cache_v_zp = layer.create_parameter(
shape=scale_shape,
dtype=paddle.get_default_dtype(),
default_initializer=paddle.nn.initializer.Constant(0),
)
set_weight_attrs(
layer.cache_k_zp,
{
**extra_weight_attrs,
},
)
set_weight_attrs(
layer.cache_v_zp,
{
**extra_weight_attrs,
},
)
def process_loaded_weights(self, layer: nn.Layer, state_dict):
"""
use for loader v0
"""
self.prefix = layer.prefix
self.cache_k_scale_name = layer.prefix + ".cachek_matmul.activation_scale"
self.cache_v_scale_name = layer.prefix + ".cachev_matmul.activation_scale"
self.cache_k_zp_name = layer.prefix + ".cachek_matmul.activation_zero_point"
self.cache_v_zp_name = layer.prefix + ".cachev_matmul.activation_zero_point"
if "block_wise" not in layer.cache_quant_type_str:
self.load_scale(layer, state_dict)
if self.cache_quant_config.has_zero_point:
self.load_zp(layer, state_dict)
def process_weights_after_loading(self, layer: nn.Layer):
"""
use for loader v1
"""
if layer.cache_k_scale._is_initialized():
layer.cache_k_out_scale.set_value(1 / layer.cache_k_scale)
if layer.cache_v_scale._is_initialized():
layer.cache_v_out_scale.set_value(1 / layer.cache_v_scale)
def apply(self, layer):
"""
apply
"""
raise RuntimeError(f"{self.__class__.__name__}.apply should not be called.")