Files
FastDeploy/tests/operators/test_wfp8afp8_sparse_gemm.py
YUNSHEN XIE 3a6058e445 Add stable ci (#3460)
* add stable ci

* fix

* update

* fix

* rename tests dir;fix stable ci bug

* add timeout limit

* update
2025-08-20 08:57:17 +08:00

164 lines
5.6 KiB
Python

# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import paddle
from fastdeploy.model_executor.ops.gpu import (
wfp8afp8_gemm_sparse_idx_convert,
wfp8afp8_sparse_gemm,
)
def wfp8afp8_gemm_naive(input_bf16, weight_quant, tokens, weight_scale, BATCH, N):
weight = weight_quant.astype("bfloat16") / weight_scale
input_bf16 = input_bf16.astype("bfloat16")
all_tokens = int(tokens.sum())
out = paddle.zeros([all_tokens, N], dtype="bfloat16")
pre_fix_token = 0
for i in range(BATCH):
input = input_bf16[pre_fix_token : pre_fix_token + tokens[i], :]
out_i = paddle.matmul(input, weight[i], transpose_y=True)
out[pre_fix_token : pre_fix_token + tokens[i], :] = out_i
pre_fix_token += tokens[i]
return out
def peruate_scale(weight_scale, N):
BATCH = weight_scale.shape[0]
weight_scale = weight_scale.reshape([BATCH, N])
temp = paddle.zeros([16])
for b in range(BATCH):
for n in range(0, N, 16):
temp[:] = weight_scale[b, n : n + 16]
for j in range(0, 16, 2):
weight_scale[b, n + j] = temp[j // 2]
weight_scale[b, n + j + 1] = temp[j // 2 + 8]
return weight_scale
def sparse(weight, sparse_idx):
pack_weight = np.zeros([weight.shape[0], weight.shape[1], weight.shape[2] // 2], dtype=weight.dtype)
idx_select = [
[0, 1, 2, 3],
[0, 2, 1, 3],
[0, 3, 1, 2],
[1, 2, 0, 3],
[1, 3, 0, 2],
[2, 3, 0, 1],
]
for b in range(weight.shape[0]):
for i in range(weight.shape[1]):
for j in range(0, weight.shape[2], 4):
idx = sparse_idx[b, i, j // 4]
idx1 = idx_select[idx][0]
idx2 = idx_select[idx][1]
idx3 = idx_select[idx][2]
idx4 = idx_select[idx][3]
weight[b, i, j + idx1] = 0
weight[b, i, j + idx2] = 0
pack_weight[b, i, j // 4 * 2] = weight[b, i, j + idx3]
pack_weight[b, i, j // 4 * 2 + 1] = weight[b, i, j + idx4]
return weight, pack_weight
def convert(weight, sparse_idx, K):
BATCH = weight.shape[0]
temp = np.zeros(weight.shape, dtype=weight.dtype)
for i in range(0, weight.shape[1], 128):
for j in range(0, 128):
dst_idx = j // 2 + (j % 2) * 64
temp[:, j + i, :] = weight[:, i + dst_idx, :]
temp_trans = np.zeros([BATCH, weight.shape[1] // 128, K // 128, 128, 64], dtype=weight.dtype)
temp_E = np.zeros([BATCH, weight.shape[1] // 128, K // 128, 128, 32], dtype=sparse_idx.dtype)
for b in range(BATCH):
for i in range(weight.shape[1] // 128):
for j in range(K // 128):
temp_trans[b, i, j] = temp[b, i * 128 : i * 128 + 128, j * 64 : j * 64 + 64]
temp_E[b, i, j] = sparse_idx[b, i * 128 : i * 128 + 128, j * 32 : j * 32 + 32]
return temp_trans, temp_E
class TestWFp8Afp8SparseGemm(unittest.TestCase):
def test_wfp8afp8_sparse_gemm(self):
paddle.seed(0)
tokens_per_group = 10
N = 128
K = 128
BATCH = 1
TokenPadding = 0
tokens = [tokens_per_group] * BATCH
tokens_perfix_sum = np.cumsum(tokens)
tokens_perfix_sum = np.insert(tokens_perfix_sum, 0, 0)
tokens = paddle.to_tensor(tokens, dtype="int32")
tokens_perfix_sum = paddle.to_tensor(tokens_perfix_sum, dtype="int32")
all_tokens = int(tokens.sum())
input_fp8 = paddle.randn([all_tokens, K], dtype="bfloat16").astype(paddle.float8_e4m3fn)
weight = paddle.randn([BATCH, N, K], dtype="bfloat16")
weight_scale = 40 / weight.abs().max(axis=-1).reshape([BATCH, N, 1])
weight_quant = (weight * weight_scale).astype(paddle.float8_e4m3fn).astype("bfloat16")
weight_quant = weight_quant.numpy()
sparse_idx = np.random.randint(0, high=6, size=(BATCH, N, K // 4))
weight_quant, pack_weight = sparse(weight_quant, sparse_idx)
weight_quant = paddle.to_tensor(weight_quant)
out_naive = wfp8afp8_gemm_naive(input_fp8, weight_quant, tokens, weight_scale, BATCH, N)
pack_weight, convert_sparse_idx = convert(pack_weight, sparse_idx, K)
pack_weight = paddle.to_tensor(pack_weight).astype(paddle.float8_e4m3fn)
convert_sparse_idx = paddle.to_tensor(convert_sparse_idx).astype("uint8").cpu()
convert_sparse_idx = wfp8afp8_gemm_sparse_idx_convert(convert_sparse_idx, int(BATCH), int(N), int(K)).cuda()
weight_scale = paddle.to_tensor(peruate_scale(weight_scale, N)).astype("float32")
out_pd = paddle.zeros([all_tokens, N], dtype="bfloat16")
wfp8afp8_sparse_gemm(
input_fp8,
convert_sparse_idx,
pack_weight.reshape([BATCH, N, K // 2]),
tokens_perfix_sum if TokenPadding == 0 else tokens,
1 / weight_scale,
out_pd,
int(TokenPadding),
int(tokens_per_group),
True,
)
print((out_pd - out_naive).abs().max())
if __name__ == "__main__":
unittest.main()