Files
FastDeploy/tests/operators/test_split_fuse.py
YuanRisheng 642480f5f6 [CI] Standard unittest (#3606)
* standard unittest

* fix bugs

* fix script
2025-08-26 19:03:11 +08:00

94 lines
3.3 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""UT for set_stop_value"""
import unittest
import paddle
from fastdeploy.model_executor.ops.gpu import get_mm_split_fuse
class TestSplitFuse(unittest.TestCase):
def setUp(self):
self.grid_thw = [[6, 20, 20], [6, 40, 20]]
self.split_fuse_img_size = 16
self.split_fuse_text_size = 384 # 1024
self.max_seq_len = 2048
self.image_token_id = 100295
def split_grid(self, origin_grid_thw):
# 划分grid_thw该函数用于视频场景
# origin_grid_thw = [6, 10, 12] ---> [2, 10, 12, 2, 10, 12, 2, 10, 12]
grid_thw = []
for t, h, w in origin_grid_thw:
if t > 2:
num_groups = t // 2
remainder = t % 2
for _ in range(num_groups):
grid_thw.extend([2, h, w])
if remainder > 0:
grid_thw.extend([remainder, h, w])
else:
grid_thw.extend([t, h, w])
return grid_thw
def test_get_mm_split_fuse(self):
grid_thw = self.split_grid(self.grid_thw)
image_bs = len(grid_thw) // 3
image_type_ids = [0] * image_bs
# 随机拼接input_ids: [txt0+img1+tx1+img2]
input_ids = [2] * 19
img1 = [self.image_token_id] * 100 * 3
txt1 = [3] * 19
img2 = [self.image_token_id] * 200 * 3
input_ids.extend(img1)
input_ids.extend(txt1)
input_ids.extend(img2)
seq_len = len(input_ids)
input_ids_tensor = paddle.to_tensor(input_ids, dtype="int64")
image_type_ids_tensor = paddle.to_tensor(image_type_ids, dtype="int32")
is_image_token = paddle.where(input_ids_tensor == self.image_token_id, 1, 0)
image_token_sum = paddle.cumsum(is_image_token) # 前缀和
image_token_sum = paddle.concat([paddle.zeros([1], dtype="int64"), image_token_sum])
grid_thw_tensor = paddle.to_tensor(grid_thw, dtype="int64")
image_chunk_selections, split_fuse_cur_seq_lens = get_mm_split_fuse(
input_ids_tensor.cpu(),
image_type_ids_tensor.cast("int32").cpu(),
image_token_sum.cast("int32").cpu(),
grid_thw_tensor.cpu(),
self.image_token_id,
image_bs,
0,
seq_len,
self.split_fuse_img_size,
self.split_fuse_text_size,
self.max_seq_len,
)
# Verify the outputs are not None
self.assertIsNotNone(image_chunk_selections)
self.assertIsNotNone(split_fuse_cur_seq_lens)
# Verify the shapes are as expected
self.assertEqual(len(image_chunk_selections.shape), 1)
self.assertEqual(len(split_fuse_cur_seq_lens.shape), 1)
if __name__ == "__main__":
unittest.main()