mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-09-26 20:41:53 +08:00

* add stable ci * fix * update * fix * rename tests dir;fix stable ci bug * add timeout limit * update
108 lines
3.3 KiB
Python
108 lines
3.3 KiB
Python
# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
"""UT for fp8_int4_gemm kernel"""
|
|
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import paddle
|
|
|
|
from fastdeploy.model_executor.ops.gpu import (
|
|
scaled_gemm_f8_i4_f16,
|
|
scaled_gemm_f8_i4_f16_weight_quantize,
|
|
)
|
|
|
|
|
|
class Test(unittest.TestCase):
|
|
def setUp(self):
|
|
"""
|
|
Initialize.
|
|
"""
|
|
paddle.seed(2024)
|
|
print(paddle.device.cuda.get_device_properties())
|
|
print(paddle.__git_commit__)
|
|
prop = paddle.device.cuda.get_device_properties()
|
|
cc = prop.major * 10 + prop.minor
|
|
if cc != 89:
|
|
self.skipTest("scaled_gemm_f8_i4_f16 only support sm 89!")
|
|
|
|
def quant_fp8_pertensor(self, tensor):
|
|
"""
|
|
quant_fp8_pertensor
|
|
"""
|
|
scale = paddle.max(paddle.abs(tensor))
|
|
tensor = paddle.cast((tensor * 448 / scale).clip(-448, 448), "float8_e4m3fn").astype(tensor.dtype)
|
|
return tensor, scale
|
|
|
|
def dequant_fp8_pertensor(self, tensor, scale):
|
|
"""
|
|
dequant_fp8_pertensor
|
|
"""
|
|
tensor = (tensor / 448 * scale).astype(tensor.dtype)
|
|
return tensor
|
|
|
|
def quant_int4_fp8_matmul(self, A, B, dtype):
|
|
"""
|
|
quant_int4_fp8_matmul
|
|
"""
|
|
A_fp8, A_fp8_scale = self.quant_fp8_pertensor(A)
|
|
B_fp8, B_fp8_scale = self.quant_fp8_pertensor(B)
|
|
|
|
processed_B, w_scale = scaled_gemm_f8_i4_f16_weight_quantize(B_fp8, groupsize=-1, scale_dtype="float16")
|
|
w_scale = paddle.view(w_scale, dtype)
|
|
out_scale = (A_fp8_scale / 448) * (B_fp8_scale / 448)
|
|
|
|
out = scaled_gemm_f8_i4_f16(
|
|
x=paddle.cast(A_fp8, "float8_e4m3fn").cuda(),
|
|
y=processed_B.cuda(),
|
|
scale=w_scale.cuda(),
|
|
zero_points=None,
|
|
bias=None,
|
|
out_scale=out_scale,
|
|
groupsize=0,
|
|
out_dtype=dtype,
|
|
)
|
|
return out
|
|
|
|
def test_fp16(self):
|
|
"""
|
|
Check fp16.
|
|
"""
|
|
A_fp32 = paddle.ones((4, 128)).clip(-448, 448)
|
|
B_fp32 = paddle.ones((128, 512)).clip(-448, 448)
|
|
C_fp32 = paddle.matmul(A_fp32, B_fp32)
|
|
|
|
out = self.quant_int4_fp8_matmul(A_fp32, B_fp32, "float16")
|
|
out = paddle.cast(out, "float32")
|
|
|
|
np.testing.assert_allclose(C_fp32.numpy(), out.numpy(), rtol=1e-04, atol=1e-04)
|
|
|
|
def test_bf16(self):
|
|
"""
|
|
Check bf16.
|
|
"""
|
|
A_fp32 = paddle.ones((4, 128)).clip(-448, 448)
|
|
B_fp32 = paddle.ones((128, 512)).clip(-448, 448)
|
|
C_fp32 = paddle.matmul(A_fp32, B_fp32)
|
|
|
|
out = self.quant_int4_fp8_matmul(A_fp32, B_fp32, "bfloat16")
|
|
out = paddle.cast(out, "float32")
|
|
|
|
np.testing.assert_allclose(C_fp32.numpy(), out.numpy(), rtol=1e-04, atol=1e-04)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|