Files
FastDeploy/tests/operators/test_rejection_top_p_sampling.py
YUNSHEN XIE 3a6058e445 Add stable ci (#3460)
* add stable ci

* fix

* update

* fix

* rename tests dir;fix stable ci bug

* add timeout limit

* update
2025-08-20 08:57:17 +08:00

71 lines
2.8 KiB
Python

# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import paddle
from fastdeploy.model_executor.ops.gpu import rejection_top_p_sampling
class TestRejectionTopPSampling(unittest.TestCase):
def setUp(self):
"""Initialize common test data"""
self.batch_size = 10
self.vocab_size = 103424
paddle.seed(2023)
# Generate test data once for all tests
self.pre_norm_prob_np = np.random.rand(self.batch_size, self.vocab_size).astype(np.float32)
self.paddle_pre_norm_prob = paddle.to_tensor(self.pre_norm_prob_np)
self.paddle_norm_prob = self.paddle_pre_norm_prob / self.paddle_pre_norm_prob.sum(axis=-1, keepdim=True)
def test_top_p_sampling_reject_case1(self):
"""Test with fixed top_p=0.8 and different random seeds"""
top_p_paddle = paddle.full((self.batch_size,), 0.8)
top_k_paddle = paddle.full((self.batch_size,), 20).cast("int64")
# Test with different seeds
for seed in [1024, 2033, 2033]:
samples = rejection_top_p_sampling(self.paddle_norm_prob, top_p_paddle, top_k_paddle, seed)
self._validate_samples(samples)
# Basic validation
self.assertTrue(paddle.all(samples >= 0))
self.assertTrue(paddle.all(samples < self.vocab_size))
def test_top_p_sampling_reject_case2(self):
"""Test with varying top_p values across batch"""
top_p_paddle = paddle.uniform(shape=[self.batch_size], min=0.1, max=1.0)
top_k_paddle = paddle.full((self.batch_size,), 20).cast("int64")
samples = rejection_top_p_sampling(self.paddle_norm_prob, top_p_paddle, top_k_paddle, -1)
self._validate_samples(samples)
# Additional check that we're getting different results for different top_p
unique_samples = len(paddle.unique(samples))
self.assertGreater(unique_samples, 1) # Should have some diversity
def _validate_samples(self, samples):
"""Common validation for all test cases"""
self.assertTrue(paddle.all(samples >= 0))
self.assertTrue(paddle.all(samples < self.vocab_size))
# Check dtype
self.assertEqual(samples.dtype, paddle.int64)
if __name__ == "__main__":
unittest.main()