mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-09-26 20:41:53 +08:00

* add stable ci * fix * update * fix * rename tests dir;fix stable ci bug * add timeout limit * update
89 lines
3.2 KiB
Python
89 lines
3.2 KiB
Python
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import paddle
|
|
|
|
from fastdeploy.model_executor.ops.gpu import moe_topk_select
|
|
|
|
|
|
class Test(unittest.TestCase):
|
|
def setUp(self):
|
|
"""
|
|
Initialize.
|
|
"""
|
|
paddle.seed(2024)
|
|
print(paddle.device.cuda.get_device_properties())
|
|
print(paddle.__git_commit__)
|
|
self.batch_size = 1500
|
|
self.num_experts = 128
|
|
self.top_k = 8
|
|
|
|
def moe_topk_select_ref(self, gate_out: paddle.Tensor, bias: paddle.Tensor, top_k: int, apply_norm_weight: bool):
|
|
gate_out_after_softmax = paddle.nn.functional.softmax(gate_out, axis=-1)
|
|
topk_weights_ref, topk_ids_ref = paddle.topk(gate_out_after_softmax, k=top_k, axis=-1)
|
|
|
|
if bias is not None:
|
|
gate_out_after_softmax_bias = gate_out_after_softmax + bias
|
|
_, topk_ids_ref = paddle.topk(gate_out_after_softmax_bias, k=top_k, axis=-1)
|
|
batch_indices = paddle.arange(gate_out.shape[0]).unsqueeze(-1).expand_as(topk_ids_ref)
|
|
topk_weights_ref = gate_out_after_softmax.gather_nd(paddle.stack([batch_indices, topk_ids_ref], axis=-1))
|
|
|
|
if apply_norm_weight:
|
|
topk_weights_ref = topk_weights_ref / topk_weights_ref.sum(axis=-1, keepdim=True)
|
|
|
|
return topk_ids_ref, topk_weights_ref
|
|
|
|
def test_moe_topk_select(self):
|
|
"""
|
|
Check moe_topk_select.
|
|
"""
|
|
gate_out = paddle.rand([self.batch_size, self.num_experts], dtype="float32")
|
|
gate_correction_bias = paddle.rand([1, self.num_experts], dtype="float32")
|
|
gate_correction_bias = gate_correction_bias / 10.0
|
|
|
|
for apply_norm_weight in [True, False]:
|
|
for bias in [None, gate_correction_bias]:
|
|
topk_ids_ref, topk_weights_ref = self.moe_topk_select_ref(
|
|
gate_out, bias, self.top_k, apply_norm_weight
|
|
)
|
|
for fused in [True, False]:
|
|
topk_ids, topk_weights = moe_topk_select(
|
|
gate_out,
|
|
bias,
|
|
self.top_k,
|
|
apply_norm_weight,
|
|
fused,
|
|
)
|
|
|
|
np.testing.assert_allclose(
|
|
topk_ids_ref,
|
|
topk_ids,
|
|
rtol=1e-05,
|
|
atol=1e-05,
|
|
)
|
|
|
|
np.testing.assert_allclose(
|
|
topk_weights_ref,
|
|
topk_weights,
|
|
rtol=1e-05,
|
|
atol=1e-05,
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|