mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-09-26 12:31:27 +08:00

* support machete weight only gemm * add generate * update * fix * change file location * add sm_version limit * fix * fix * fix ci * fix coverage * fix xpu
175 lines
5.1 KiB
Python
175 lines
5.1 KiB
Python
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import os
|
|
import re
|
|
import struct
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import paddle
|
|
import paddle.nn.quant as Q
|
|
from paddle import base
|
|
from paddle.base import core
|
|
from paddle.framework import set_default_dtype
|
|
|
|
from fastdeploy.model_executor.layers.quantization.ops import (
|
|
machete_quantize_and_pack,
|
|
machete_wint_mm,
|
|
)
|
|
|
|
np.random.seed(123)
|
|
paddle.seed(123)
|
|
|
|
|
|
def get_cuda_version():
|
|
result = os.popen("nvcc --version").read()
|
|
regex = r"release (\S+),"
|
|
match = re.search(regex, result)
|
|
if match:
|
|
num = str(match.group(1))
|
|
integer, decimal = num.split(".")
|
|
return int(integer) * 1000 + int(float(decimal) * 10)
|
|
else:
|
|
return -1
|
|
|
|
|
|
def get_sm_version():
|
|
prop = paddle.device.cuda.get_device_properties()
|
|
cc = prop.major * 10 + prop.minor
|
|
return cc
|
|
|
|
|
|
def convert_uint16_to_float(in_list):
|
|
in_list = np.asarray(in_list)
|
|
out = np.vectorize(
|
|
lambda x: struct.unpack("<f", struct.pack("<I", np.uint32(x) << np.uint32(16)))[0],
|
|
otypes=[np.float32],
|
|
)(in_list.flat)
|
|
return np.reshape(out, in_list.shape)
|
|
|
|
|
|
@unittest.skipIf(
|
|
not core.is_compiled_with_cuda() or get_sm_version() < 90,
|
|
"machete only support sm90.",
|
|
)
|
|
class WeightOnlyLinearTestCase(unittest.TestCase):
|
|
def config(self):
|
|
self.dtype = "float16"
|
|
self.rtol = 1e-5
|
|
self.atol = 1e-2
|
|
self.bias = False
|
|
self.batch = 1
|
|
self.token = 512
|
|
self.in_features = 7168
|
|
self.out_features = 1024
|
|
self.weight_dtype = "int4"
|
|
self.static = False
|
|
self.group_size = -1
|
|
|
|
def setUp(self):
|
|
self.config()
|
|
if self.dtype == "bfloat16" or self.weight_dtype == "int4":
|
|
self.atol = 1.3e-1
|
|
x = np.random.random((self.token, self.in_features))
|
|
self.x = paddle.to_tensor(x, dtype=self.dtype)
|
|
if self.bias:
|
|
bias_attr = base.ParamAttr(
|
|
trainable=False,
|
|
regularizer=None,
|
|
initializer=paddle.nn.initializer.Constant(value=1.0),
|
|
)
|
|
else:
|
|
bias_attr = None
|
|
set_default_dtype(self.dtype)
|
|
self.linear = paddle.nn.Linear(self.in_features, self.out_features, bias_attr=bias_attr)
|
|
|
|
self.bias = self.linear.bias
|
|
self.weight = self.linear.weight
|
|
self.float_weight = self.linear.weight
|
|
self.weight_scale = None
|
|
|
|
self.weight, self.weight_scale = Q.weight_quantize(
|
|
(self.float_weight.cuda() if self.weight_dtype == "int8" else self.weight.cpu()),
|
|
algo=("weight_only_int8" if self.weight_dtype == "int8" else "weight_only_int4"),
|
|
group_size=self.group_size,
|
|
)
|
|
|
|
def get_linear_out(self):
|
|
out = self.linear(self.x)
|
|
return out.numpy()
|
|
|
|
def get_weight_only_linear_out(self):
|
|
for i in range(10):
|
|
out = Q.weight_only_linear(
|
|
self.x,
|
|
self.weight,
|
|
bias=self.bias,
|
|
weight_scale=self.weight_scale,
|
|
weight_dtype=self.weight_dtype,
|
|
group_size=self.group_size,
|
|
)
|
|
return out.numpy()
|
|
|
|
def get_machete_weight_only_linear_out(self):
|
|
w_q, w_s = machete_quantize_and_pack(
|
|
w=self.float_weight.cuda(),
|
|
atype=self.dtype,
|
|
quant_type="uint4b8",
|
|
)
|
|
|
|
out = machete_wint_mm(
|
|
self.x,
|
|
w_prepack=w_q,
|
|
w_g_s=w_s, # group scales
|
|
weight_dtype="uint4b8", # weight_dtype
|
|
)
|
|
return out.numpy()
|
|
|
|
def test_weight_only_linear(self):
|
|
# out_expect = self.get_linear_out()
|
|
out_paddle = self.get_weight_only_linear_out()
|
|
out_machete = self.get_machete_weight_only_linear_out()
|
|
|
|
if self.dtype == "bfloat16":
|
|
out_paddle = convert_uint16_to_float(out_paddle)
|
|
# out_expect = convert_uint16_to_float(out_expect)
|
|
out_machete = convert_uint16_to_float(out_machete)
|
|
np.testing.assert_allclose(out_paddle, out_machete, rtol=self.rtol, atol=self.atol)
|
|
|
|
|
|
M = [32, 128]
|
|
K_N = [[2048, 4096]]
|
|
|
|
|
|
def make_case(m, k, n):
|
|
class Case(WeightOnlyLinearTestCase):
|
|
def config(self, _m=m, _k=k, _n=n):
|
|
super().config()
|
|
self.token = m
|
|
self.in_features = k
|
|
self.out_features = n
|
|
|
|
Case.name = f"WeightOnlyLinearTestCase{m}{k}{n}"
|
|
return Case
|
|
|
|
|
|
for k, n in K_N:
|
|
for m in M:
|
|
cls = make_case(m, k, n)
|
|
globals()[cls.name] = cls
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|