Files
FastDeploy/tests/operators/test_cutlass_scaled_mm.py
YUNSHEN XIE 3a6058e445 Add stable ci (#3460)
* add stable ci

* fix

* update

* fix

* rename tests dir;fix stable ci bug

* add timeout limit

* update
2025-08-20 08:57:17 +08:00

99 lines
3.7 KiB
Python

# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""UT for air_topp_sampling kernel"""
import subprocess
import unittest
import numpy as np
import paddle
from fastdeploy.model_executor.layers.quantization.ops import (
cutlass_scaled_mm,
scaled_fp8_quant,
)
class Test(unittest.TestCase):
def setUp(self):
"""
Initialize.
"""
paddle.seed(2024)
np.random.seed(42)
self.prop = paddle.device.cuda.get_device_properties()
self.sm_version = self.prop.major * 10 + self.prop.minor
print(self.prop)
print(paddle.__git_commit__)
nvcc_output = subprocess.check_output(["nvcc", "--version"], universal_newlines=True)
output = nvcc_output.split()
release_idx = output.index("release") + 1
self.nvcc_cuda_version = float(output[release_idx].split(",")[0])
def test_cutlass_scaled_mm_fp8(self):
"""
Check cutlass_scaled_mm output.
"""
if self.sm_version < 89:
self.skipTest("cutlass_scaled_mm with fp8 input only support sm89+")
M = 32
N = 1024
K = 1024
a = paddle.rand([M, K], dtype=paddle.bfloat16)
b = paddle.rand([N, K], dtype=paddle.bfloat16)
b_q, b_scales = scaled_fp8_quant(b, use_per_token_if_dynamic=False)
a_q, a_scales = scaled_fp8_quant(a, use_per_token_if_dynamic=True)
# Ensure quantized tensors and scales are valid
assert a_q.numel() > 0, "Quantized tensor 'a_q' must not be empty"
assert b_q.numel() > 0, "Quantized tensor 'b_q' must not be empty"
assert a_scales.numel() > 0, "Scale tensor 'a_scales' must not be empty"
assert b_scales.numel() > 0, "Scale tensor 'b_scales' must not be empty"
bias = paddle.rand([N], dtype=paddle.bfloat16)
baseline = paddle.matmul(a, b, transpose_x=False, transpose_y=True)
if bias is not None:
baseline = paddle.add(baseline, bias)
out_type = a.dtype
c = cutlass_scaled_mm(a_q, b_q, a_scales, b_scales, out_type, bias)
euqal = np.allclose(baseline.numpy(), c.numpy(), rtol=1e-2, atol=1e-2)
print(euqal) #
def test_cutlass_scaled_mm_int8(self):
"""
Check cutlass_scaled_mm output.
"""
M = 32
N = 1024
K = 512
a = paddle.rand([M, K], dtype=paddle.bfloat16)
b = paddle.rand([N, K], dtype=paddle.bfloat16)
a_scales = (a.cast(paddle.float32).abs().max(axis=-1) / 127)[:, None]
a_q = paddle.clip(a / a_scales, -127, 127).cast(paddle.int8)
b_scales = (b.cast(paddle.float32).abs().max(axis=-1) / 127)[:, None]
b_q = paddle.clip(b / b_scales, -127, 127).cast(paddle.int8)
bias = paddle.rand([N], dtype=paddle.bfloat16)
baseline = paddle.matmul(a, b, transpose_x=False, transpose_y=True)
if bias is not None:
baseline = paddle.add(baseline, bias)
out_type = a.dtype
c = cutlass_scaled_mm(a_q, b_q, a_scales, b_scales, out_type, bias)
euqal = np.allclose(baseline.numpy(), c.numpy(), rtol=1e-2, atol=1e-2)
print(euqal) #
if __name__ == "__main__":
unittest.main()