mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-09-26 20:41:53 +08:00

* add stable ci * fix * update * fix * rename tests dir;fix stable ci bug * add timeout limit * update
99 lines
3.7 KiB
Python
99 lines
3.7 KiB
Python
# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""UT for air_topp_sampling kernel"""
|
|
|
|
import subprocess
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import paddle
|
|
|
|
from fastdeploy.model_executor.layers.quantization.ops import (
|
|
cutlass_scaled_mm,
|
|
scaled_fp8_quant,
|
|
)
|
|
|
|
|
|
class Test(unittest.TestCase):
|
|
def setUp(self):
|
|
"""
|
|
Initialize.
|
|
"""
|
|
paddle.seed(2024)
|
|
np.random.seed(42)
|
|
self.prop = paddle.device.cuda.get_device_properties()
|
|
self.sm_version = self.prop.major * 10 + self.prop.minor
|
|
print(self.prop)
|
|
print(paddle.__git_commit__)
|
|
nvcc_output = subprocess.check_output(["nvcc", "--version"], universal_newlines=True)
|
|
output = nvcc_output.split()
|
|
release_idx = output.index("release") + 1
|
|
self.nvcc_cuda_version = float(output[release_idx].split(",")[0])
|
|
|
|
def test_cutlass_scaled_mm_fp8(self):
|
|
"""
|
|
Check cutlass_scaled_mm output.
|
|
"""
|
|
if self.sm_version < 89:
|
|
self.skipTest("cutlass_scaled_mm with fp8 input only support sm89+")
|
|
M = 32
|
|
N = 1024
|
|
K = 1024
|
|
a = paddle.rand([M, K], dtype=paddle.bfloat16)
|
|
b = paddle.rand([N, K], dtype=paddle.bfloat16)
|
|
b_q, b_scales = scaled_fp8_quant(b, use_per_token_if_dynamic=False)
|
|
a_q, a_scales = scaled_fp8_quant(a, use_per_token_if_dynamic=True)
|
|
|
|
# Ensure quantized tensors and scales are valid
|
|
assert a_q.numel() > 0, "Quantized tensor 'a_q' must not be empty"
|
|
assert b_q.numel() > 0, "Quantized tensor 'b_q' must not be empty"
|
|
assert a_scales.numel() > 0, "Scale tensor 'a_scales' must not be empty"
|
|
assert b_scales.numel() > 0, "Scale tensor 'b_scales' must not be empty"
|
|
|
|
bias = paddle.rand([N], dtype=paddle.bfloat16)
|
|
baseline = paddle.matmul(a, b, transpose_x=False, transpose_y=True)
|
|
if bias is not None:
|
|
baseline = paddle.add(baseline, bias)
|
|
out_type = a.dtype
|
|
c = cutlass_scaled_mm(a_q, b_q, a_scales, b_scales, out_type, bias)
|
|
euqal = np.allclose(baseline.numpy(), c.numpy(), rtol=1e-2, atol=1e-2)
|
|
print(euqal) #
|
|
|
|
def test_cutlass_scaled_mm_int8(self):
|
|
"""
|
|
Check cutlass_scaled_mm output.
|
|
"""
|
|
M = 32
|
|
N = 1024
|
|
K = 512
|
|
a = paddle.rand([M, K], dtype=paddle.bfloat16)
|
|
b = paddle.rand([N, K], dtype=paddle.bfloat16)
|
|
a_scales = (a.cast(paddle.float32).abs().max(axis=-1) / 127)[:, None]
|
|
a_q = paddle.clip(a / a_scales, -127, 127).cast(paddle.int8)
|
|
b_scales = (b.cast(paddle.float32).abs().max(axis=-1) / 127)[:, None]
|
|
b_q = paddle.clip(b / b_scales, -127, 127).cast(paddle.int8)
|
|
|
|
bias = paddle.rand([N], dtype=paddle.bfloat16)
|
|
baseline = paddle.matmul(a, b, transpose_x=False, transpose_y=True)
|
|
if bias is not None:
|
|
baseline = paddle.add(baseline, bias)
|
|
out_type = a.dtype
|
|
c = cutlass_scaled_mm(a_q, b_q, a_scales, b_scales, out_type, bias)
|
|
euqal = np.allclose(baseline.numpy(), c.numpy(), rtol=1e-2, atol=1e-2)
|
|
print(euqal) #
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|