mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-09-26 20:41:53 +08:00

* [MetaxGPU] Support FastDeploy on metax gpu * Update metax_worker.py 1. change worker log; 2. remove custom allreduce, adapt it later; 3. remove cuda graph; * Update __init__.py 1. remove metax's key work comment * Update __init__.py 1. remove metax's key word comment; 2. add fused_moe_kernel_paddle import --------- Co-authored-by: yongqiangma <xing.wo@163.com>
416 lines
16 KiB
Python
416 lines
16 KiB
Python
"""
|
|
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
|
|
import math
|
|
from typing import Optional, Tuple
|
|
|
|
import paddle
|
|
from paddle import nn
|
|
|
|
from fastdeploy.config import ModelConfig
|
|
from fastdeploy.platforms import current_platform
|
|
|
|
if current_platform.is_cuda():
|
|
from fastdeploy.model_executor.ops.gpu import fused_rotary_position_encoding
|
|
|
|
from .utils import CpuGuard
|
|
|
|
|
|
class ErnieRotaryEmbedding:
|
|
def __init__(self, rotary_dim, base, partial_rotary_factor):
|
|
"""
|
|
Pre-calculate rotary position embedding for position_ids.
|
|
"""
|
|
self.rotary_dim = rotary_dim
|
|
self.base = base
|
|
self.partial_rotary_factor = partial_rotary_factor
|
|
|
|
def __call__(self, position_ids):
|
|
bsz, max_seq_len = position_ids.shape[:2]
|
|
inv_freq = self.base ** (-paddle.arange(0, self.rotary_dim, 2, dtype="float32") / self.rotary_dim)
|
|
partial_rotary_position_ids = position_ids / self.partial_rotary_factor
|
|
freqs = paddle.einsum("ij,k->ijk", partial_rotary_position_ids.cast("float32"), inv_freq)
|
|
if paddle.is_compiled_with_xpu() or paddle.is_compiled_with_custom_device("iluvatar_gpu"):
|
|
# shape: [B, S, D]
|
|
rot_emb = paddle.zeros((2, bsz, max_seq_len, 1, self.rotary_dim), dtype="float32")
|
|
emb = paddle.stack([freqs, freqs], axis=-1).reshape((bsz, max_seq_len, self.rotary_dim))
|
|
elif current_platform.is_gcu():
|
|
# shape: [B, S, D]
|
|
rot_emb = paddle.concat([freqs.cos(), freqs.sin()], axis=-1)
|
|
return rot_emb
|
|
elif paddle.is_compiled_with_custom_device("metax_gpu"):
|
|
# shape: [B, S, D]
|
|
rot_emb = paddle.zeros((2, bsz, max_seq_len, 1, self.rotary_dim), dtype="float32")
|
|
emb = paddle.stack([freqs, freqs], axis=-1).reshape((bsz, max_seq_len, self.rotary_dim))
|
|
else:
|
|
# shape: [B, S, D/2]
|
|
rot_emb = paddle.zeros((2, bsz, max_seq_len, 1, self.rotary_dim // 2), dtype="float32")
|
|
emb = paddle.stack([freqs], axis=-1).reshape((bsz, max_seq_len, self.rotary_dim // 2))
|
|
# shape: [B, S, 1, D]
|
|
emb = paddle.unsqueeze(emb, 2)
|
|
rot_emb[0] = paddle.cos(emb)
|
|
rot_emb[1] = paddle.sin(emb)
|
|
if paddle.is_compiled_with_custom_device("npu"):
|
|
return (
|
|
paddle.concat([rot_emb, rot_emb], axis=3)
|
|
.transpose([0, 1, 2, 4, 3])
|
|
.reshape([2, bsz, max_seq_len, 1, self.rotary_dim])
|
|
)
|
|
else:
|
|
return rot_emb
|
|
|
|
|
|
class QwenRotaryEmbedding:
|
|
def __init__(self, rotary_dim, base, partial_rotary_factor):
|
|
"""
|
|
Pre-calculate rotary position embedding for position_ids.
|
|
"""
|
|
self.rotary_dim = rotary_dim
|
|
self.base = base
|
|
self.partial_rotary_factor = partial_rotary_factor
|
|
|
|
def __call__(self, position_ids):
|
|
bsz, max_seq_len = position_ids.shape[:2]
|
|
rot_emb = paddle.zeros((2, bsz, max_seq_len, 1, self.rotary_dim), dtype="float32")
|
|
inv_freq = self.base ** (-paddle.arange(0, self.rotary_dim, 2, dtype="float32") / self.rotary_dim)
|
|
|
|
# shape: [B, S, D/2]
|
|
freqs = paddle.einsum("ij,k->ijk", position_ids.cast("float32"), inv_freq)
|
|
if current_platform.is_gcu():
|
|
# shape: [B, S, D]
|
|
rot_emb = paddle.concat([freqs.cos(), freqs.sin()], axis=-1)
|
|
return rot_emb
|
|
# shape: [B, S, 1, D]
|
|
emb = paddle.concat([freqs, freqs], axis=-1).reshape((bsz, max_seq_len, 1, self.rotary_dim))
|
|
|
|
rot_emb[0] = paddle.cos(emb)
|
|
rot_emb[1] = paddle.sin(emb)
|
|
|
|
return rot_emb
|
|
|
|
|
|
def yarn_get_mscale(scale=1, mscale=1):
|
|
""" """
|
|
if scale <= 1:
|
|
return 1.0
|
|
return 0.1 * mscale * math.log(scale) + 1.0
|
|
|
|
|
|
def yarn_find_correction_dim(num_rotations, dim, base=10000, max_position_embeddings=2048):
|
|
""" """
|
|
return (dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))) / (2 * math.log(base))
|
|
|
|
|
|
def yarn_find_correction_range(low_rot, high_rot, dim, base=10000, max_position_embeddings=2048):
|
|
""" """
|
|
low = math.floor(yarn_find_correction_dim(low_rot, dim, base, max_position_embeddings))
|
|
high = math.ceil(yarn_find_correction_dim(high_rot, dim, base, max_position_embeddings))
|
|
return max(low, 0), min(high, dim - 1) # Clamp values just in case
|
|
|
|
|
|
def yarn_linear_ramp_mask(min, max, dim):
|
|
""" """
|
|
if min == max:
|
|
max += 0.001 # Prevent singularity
|
|
|
|
linear_func = (paddle.arange(dim, dtype=paddle.float32) - min) / (max - min)
|
|
ramp_func = paddle.clip(linear_func, 0, 1)
|
|
return ramp_func
|
|
|
|
|
|
class DeepseekScalingRotaryEmbedding(nn.Layer):
|
|
"""RotaryEmbedding extended with YaRN method.
|
|
|
|
Credits to Peng et al. github.com/jquesnelle/yarn
|
|
|
|
Args:
|
|
rotary_dim(int): Dimension of rotary embeddings (head dimension)
|
|
max_position_embeddings(int): Original training context length
|
|
base(float): Base value used to compute the inverse frequencies.
|
|
scaling_factor(float): Context extension scaling ratio (target_len / original_len)
|
|
extrapolation_factor(float): Weight for extrapolated frequencies (default=1)
|
|
attn_factor(float): Attention magnitude scaling factor (default=1)
|
|
beta_fast(int): High-frequency correction cutoff (default=32)
|
|
beta_slow(int): Low-frequency correction cutoff (default=1)
|
|
mscale(float): Primary magnitude scaling factor (default=1)
|
|
mscale_all_dim(float): Alternate magnitude scaling factor (default=0)
|
|
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
rotary_dim: int,
|
|
max_position_embeddings: int,
|
|
base: int,
|
|
scaling_factor: float,
|
|
*,
|
|
extrapolation_factor: float = 1,
|
|
attn_factor: float = 1,
|
|
beta_fast: int = 32,
|
|
beta_slow: int = 1,
|
|
mscale: float = 1,
|
|
mscale_all_dim: float = 0,
|
|
) -> None:
|
|
super().__init__()
|
|
self._dtype = paddle.get_default_dtype()
|
|
|
|
self.rotary_dim = rotary_dim
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.base = base
|
|
|
|
self.scaling_factor = scaling_factor
|
|
self.extrapolation_factor = extrapolation_factor
|
|
self.attn_factor = attn_factor
|
|
self.beta_fast = beta_fast
|
|
self.beta_slow = beta_slow
|
|
# Get n-d magnitude scaling corrected for interpolation.
|
|
self.mscale = float(
|
|
yarn_get_mscale(self.scaling_factor, float(mscale))
|
|
/ yarn_get_mscale(self.scaling_factor, float(mscale_all_dim))
|
|
* attn_factor
|
|
)
|
|
|
|
cache = self._compute_cos_sin_cache()
|
|
|
|
self.cos_sin_cache: paddle.Tensor
|
|
self.register_buffer("cos_sin_cache", cache, persistable=True)
|
|
|
|
def _compute_inv_freq(self, scaling_factor: float) -> paddle.Tensor:
|
|
pos_freqs = self.base ** (paddle.arange(0, self.rotary_dim, 2, dtype=paddle.float32) / self.rotary_dim)
|
|
|
|
inv_freq_extrapolation = 1.0 / pos_freqs
|
|
inv_freq_interpolation = 1.0 / (scaling_factor * pos_freqs)
|
|
|
|
low, high = yarn_find_correction_range(
|
|
self.beta_fast,
|
|
self.beta_slow,
|
|
self.rotary_dim,
|
|
self.base,
|
|
self.max_position_embeddings,
|
|
)
|
|
# Get n-d rotational scaling corrected for extrapolation
|
|
inv_freq_mask = (1 - yarn_linear_ramp_mask(low, high, self.rotary_dim // 2)) * self.extrapolation_factor
|
|
inv_freq = inv_freq_interpolation * (1 - inv_freq_mask) + inv_freq_extrapolation * inv_freq_mask
|
|
return inv_freq
|
|
|
|
def _compute_cos_sin_cache(self) -> paddle.Tensor:
|
|
inv_freq = self._compute_inv_freq(self.scaling_factor)
|
|
t = paddle.arange(
|
|
self.max_position_embeddings * self.scaling_factor,
|
|
dtype=paddle.float32,
|
|
)
|
|
freqs = paddle.einsum("i,j->ij", t, inv_freq)
|
|
cos = freqs.cos() * self.mscale
|
|
sin = freqs.sin() * self.mscale
|
|
cache = paddle.concat((cos, sin), axis=-1)
|
|
return cache.cast(self._dtype)
|
|
|
|
def forward(
|
|
self,
|
|
position_ids: paddle.Tensor,
|
|
query: paddle.Tensor,
|
|
key: paddle.Tensor,
|
|
) -> Tuple[paddle.Tensor, paddle.Tensor]:
|
|
""" """
|
|
# In-place operations that update the query and key tensors.
|
|
fused_rotary_position_encoding(query, key, position_ids, self.cos_sin_cache, self.rotary_dim, False)
|
|
|
|
return query, key
|
|
|
|
|
|
def get_rope_impl(
|
|
rotary_dim: int,
|
|
base: 10000.0,
|
|
position_ids: paddle.Tensor,
|
|
model_config: Optional[ModelConfig] = None,
|
|
partial_rotary_factor=1,
|
|
) -> paddle.Tensor:
|
|
"""
|
|
The real implementation of get_rope
|
|
"""
|
|
|
|
architecture = model_config.architectures[0]
|
|
if model_config is None or architecture.startswith("Qwen"):
|
|
rotary_emb_layer = QwenRotaryEmbedding(rotary_dim, base, partial_rotary_factor)
|
|
rotary_emb = rotary_emb_layer(position_ids)
|
|
else:
|
|
rotary_emb_layer = ErnieRotaryEmbedding(rotary_dim, base, partial_rotary_factor)
|
|
rotary_emb = rotary_emb_layer(position_ids)
|
|
return rotary_emb
|
|
|
|
|
|
def get_rope_xpu(
|
|
rotary_dim: int,
|
|
base: 10000.0,
|
|
position_ids: paddle.Tensor,
|
|
model_config: Optional[ModelConfig] = None,
|
|
partial_rotary_factor=1,
|
|
) -> paddle.Tensor:
|
|
"""
|
|
In XPU, cos and sin compute must be done on cpu
|
|
"""
|
|
with CpuGuard():
|
|
position_ids = position_ids.cpu()
|
|
rotary_emb = get_rope_impl(rotary_dim, base, position_ids, model_config, partial_rotary_factor)
|
|
return rotary_emb.to("xpu")
|
|
|
|
|
|
def get_rope(
|
|
rotary_dim: int,
|
|
base: 10000.0,
|
|
position_ids: paddle.Tensor,
|
|
model_config: Optional[ModelConfig] = None,
|
|
partial_rotary_factor: int = 1,
|
|
) -> paddle.Tensor:
|
|
"""
|
|
Pre-calculate rotary position embedding for position_ids.
|
|
|
|
Args:
|
|
rotary_dim (int):
|
|
Dimension of rotary embeddings (head dimension)
|
|
base (float, optional):
|
|
Base value used to compute the inverse frequencies.
|
|
Default: 10000.0.
|
|
position_ids (paddle.Tensor):
|
|
Tensor containing position indices of input tokens.
|
|
model_config (Optional[ModelConfig]):
|
|
Model configuration object containing architecture information.
|
|
If provided, determines RoPE implementation based on model architecture.
|
|
partial_rotary_factor (int, optional):
|
|
Factor controlling partial rotary application.
|
|
Default: 1 (apply to all dimensions).
|
|
"""
|
|
if current_platform.is_xpu():
|
|
return get_rope_xpu(rotary_dim, base, position_ids, model_config, partial_rotary_factor)
|
|
else:
|
|
return get_rope_impl(rotary_dim, base, position_ids, model_config, partial_rotary_factor)
|
|
|
|
|
|
class ErnieVlRotaryEmbedding3D:
|
|
def __init__(
|
|
self,
|
|
rotary_dim,
|
|
base,
|
|
partial_rotary_factor,
|
|
max_position,
|
|
freq_allocation,
|
|
):
|
|
self.rotary_dim = rotary_dim
|
|
self.base = base
|
|
self.paritial_rotary_factor = partial_rotary_factor
|
|
self.max_position = max_position
|
|
self.freq_allocation = freq_allocation
|
|
|
|
def __call__(self, position_ids):
|
|
rot_emb = paddle.zeros((2, 1, self.max_position, 1, self.rotary_dim // 2), dtype="float32")
|
|
|
|
# position_ids_3d: [bsz, seq_len, 3]
|
|
position_ids_3d = paddle.tile(
|
|
paddle.arange(self.max_position, dtype="int64").unsqueeze(0).unsqueeze(-1),
|
|
[1, 1, 3],
|
|
)
|
|
|
|
position_ids_3d[:, : position_ids.shape[1], :] = position_ids
|
|
|
|
# import pdb;pdb.set_trace()
|
|
|
|
# position_ids: [bsz, seq_len]
|
|
position_ids = paddle.arange(0, self.max_position, 1, dtype="float32").reshape((1, -1))
|
|
|
|
position_ids = position_ids / self.paritial_rotary_factor
|
|
|
|
indices = paddle.arange(0, self.rotary_dim, 2, dtype="float32")
|
|
indices = 1 / self.base ** (indices / self.rotary_dim)
|
|
# sinusoid_inp: [bsz, seq_len, 1, head_dim // 2]
|
|
sinusoid_inp = position_ids.unsqueeze(-1) * indices.unsqueeze(0)
|
|
# pos_emb: [bsz, seq_len, 1, head_dim]
|
|
pos_emb = paddle.concat([paddle.sin(sinusoid_inp), paddle.cos(sinusoid_inp)], axis=-1)
|
|
# pos_emb: [bsz, 1, seq_len, head_dim]
|
|
pos_emb = paddle.reshape(pos_emb, (-1, 1, self.max_position, self.rotary_dim))
|
|
# pos_emb: [bsz, seq_len, 1, head_dim]
|
|
pos_emb = pos_emb.transpose([0, 2, 1, 3])
|
|
# sin: [bsz, seq_len, 1, head_dim // 2]
|
|
sin, cos = paddle.chunk(pos_emb, 2, axis=-1)
|
|
batch_indices = paddle.arange(end=position_ids.shape[0]).cast("int64")
|
|
# batch_indices: [[0]]
|
|
batch_indices = batch_indices[..., None]
|
|
# sin, cos: [3, seq_len, 1, head_dim // 2]
|
|
sin = sin.tile([position_ids.shape[0], 1, 1, 1])
|
|
cos = cos.tile([position_ids.shape[0], 1, 1, 1])
|
|
|
|
tmp_pos_id_0 = position_ids_3d[..., 0].squeeze().astype("int64")
|
|
tmp_pos_id_1 = position_ids_3d[..., 1].squeeze().astype("int64")
|
|
tmp_pos_id_2 = position_ids_3d[..., 2].squeeze().astype("int64")
|
|
|
|
sin_bsz = paddle.index_select(sin, index=batch_indices, axis=0)
|
|
sin_t = paddle.index_select(sin_bsz, index=tmp_pos_id_0, axis=1)[:, :, :, -self.freq_allocation :]
|
|
sin_h = paddle.index_select(sin_bsz, index=tmp_pos_id_1, axis=1)[
|
|
:, :, :, : self.rotary_dim // 2 - self.freq_allocation : 2
|
|
]
|
|
sin_w = paddle.index_select(sin_bsz, index=tmp_pos_id_2, axis=1)[
|
|
:, :, :, 1 : self.rotary_dim // 2 - self.freq_allocation : 2
|
|
]
|
|
sin_hw = paddle.stack([sin_h, sin_w], axis=-1).reshape(sin_h.shape[:-1] + [sin_h.shape[-1] * 2])
|
|
sin_thw = paddle.concat([sin_hw, sin_t], axis=-1)
|
|
|
|
cos_bsz = paddle.index_select(cos, index=batch_indices, axis=0)
|
|
cos_t = paddle.index_select(cos_bsz, index=tmp_pos_id_0, axis=1)[:, :, :, -self.freq_allocation :]
|
|
cos_h = paddle.index_select(cos_bsz, index=tmp_pos_id_1, axis=1)[
|
|
:, :, :, : self.rotary_dim // 2 - self.freq_allocation : 2
|
|
]
|
|
cos_w = paddle.index_select(cos_bsz, index=tmp_pos_id_2, axis=1)[
|
|
:, :, :, 1 : self.rotary_dim // 2 - self.freq_allocation : 2
|
|
]
|
|
cos_hw = paddle.stack([cos_h, cos_w], axis=-1).reshape(cos_h.shape[:-1] + [cos_h.shape[-1] * 2])
|
|
cos_thw = paddle.concat([cos_hw, cos_t], axis=-1)
|
|
|
|
rot_emb[0] = cos_thw
|
|
rot_emb[1] = sin_thw
|
|
|
|
return rot_emb
|
|
|
|
|
|
def get_rope_3d(
|
|
rotary_dim: int,
|
|
base: float,
|
|
position_ids: paddle.Tensor,
|
|
partial_rotary_factor: float,
|
|
max_position: int,
|
|
freq_allocation: int,
|
|
) -> paddle.Tensor:
|
|
"""
|
|
Pre-calculate rotary position embedding for position_ids.
|
|
|
|
Args:
|
|
rotary_dim (int):
|
|
Dimension of rotary embeddings (head dimension)
|
|
base (float):
|
|
Base value used to compute the inverse frequencies.
|
|
Default: 10000.0.
|
|
position_ids (paddle.Tensor):
|
|
Tensor containing position indices of input tokens.
|
|
partial_rotary_factor (float):
|
|
Factor controlling partial rotary application.
|
|
Default: 1 (apply to all dimensions).
|
|
max_position: Maximum position index to precompute.
|
|
freq_allocation: Number of rotary dimensions allocated to temporal axis
|
|
"""
|
|
rotary_emb3d_layer = ErnieVlRotaryEmbedding3D(
|
|
rotary_dim, base, partial_rotary_factor, max_position, freq_allocation
|
|
)
|
|
rotary_emb_3d = rotary_emb3d_layer(position_ids)
|
|
return rotary_emb_3d
|