mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-09-26 12:31:27 +08:00

* support machete weight only gemm * add generate * update * fix * change file location * add sm_version limit * fix * fix * fix ci * fix coverage * fix xpu
417 lines
14 KiB
Python
417 lines
14 KiB
Python
"""
|
|
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
|
|
import os
|
|
from abc import abstractmethod
|
|
from typing import Optional
|
|
|
|
import paddle
|
|
from paddle.nn.quant import weight_only_linear, weight_quantize
|
|
|
|
from fastdeploy import envs
|
|
from fastdeploy.model_executor.layers.linear import (
|
|
MergedColumnParallelLinear,
|
|
QKVParallelLinear,
|
|
)
|
|
from fastdeploy.model_executor.utils import TensorTracker, free_tensor, set_weight_attrs
|
|
from fastdeploy.platforms import current_platform
|
|
|
|
from ..moe import FusedMoE
|
|
from ..utils import get_tensor
|
|
from .quant_base import QuantConfigBase, QuantMethodBase
|
|
|
|
|
|
def get_sm_version():
|
|
prop = paddle.device.cuda.get_device_properties()
|
|
cc = prop.major * 10 + prop.minor
|
|
return cc
|
|
|
|
|
|
class WeightOnlyConfig(QuantConfigBase):
|
|
"""
|
|
Quantization config for weight only
|
|
Args:
|
|
algo: The quant algorithm("weight_only_int8" or "weight_only_int4") used for weight only linear layer
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
algo: str,
|
|
) -> None:
|
|
super().__init__()
|
|
self.algo = algo
|
|
# arch (int): The compute arch for target device. For example, A100 is 80, v100 is 70,
|
|
# if you do not assign arch, we will get arch from your device, default: None.
|
|
self.weight_only_linear_arch = os.getenv("FLAGS_weight_only_linear_arch")
|
|
if self.weight_only_linear_arch is not None:
|
|
self.weight_only_linear_arch = int(self.weight_only_linear_arch)
|
|
self.quant_max_bound = 0
|
|
self.quant_min_bound = 0
|
|
self.quant_round_type = 0
|
|
|
|
def name(self) -> str:
|
|
return "weight_only"
|
|
|
|
@classmethod
|
|
def from_config(cls, config: dict) -> "WeightOnlyConfig":
|
|
algo = config["algo"]
|
|
return cls(algo)
|
|
|
|
def get_quant_method(self, layer) -> Optional[QuantMethodBase]:
|
|
if current_platform.is_xpu():
|
|
from fastdeploy.model_executor.layers.backends import (
|
|
XPUWeightOnlyLinearMethod,
|
|
)
|
|
from fastdeploy.model_executor.layers.moe.fused_moe_xpu_backend import (
|
|
XPUWeightOnlyMoEMethod,
|
|
)
|
|
|
|
if isinstance(layer, FusedMoE):
|
|
return XPUWeightOnlyMoEMethod(self)
|
|
else:
|
|
return XPUWeightOnlyLinearMethod(self)
|
|
elif current_platform.is_gcu():
|
|
from fastdeploy.model_executor.layers.backends import (
|
|
GCUWeightOnlyLinearMethod,
|
|
GCUWeightOnlyMoEMethod,
|
|
)
|
|
|
|
if isinstance(layer, FusedMoE):
|
|
return GCUWeightOnlyMoEMethod(self)
|
|
else:
|
|
return GCUWeightOnlyLinearMethod(self)
|
|
elif current_platform.is_dcu():
|
|
if isinstance(layer, FusedMoE):
|
|
from fastdeploy.model_executor.layers.backends import (
|
|
DCUTritonWeightOnlyMoEMethod,
|
|
)
|
|
|
|
return DCUTritonWeightOnlyMoEMethod(self)
|
|
else:
|
|
from fastdeploy.model_executor.layers.backends import (
|
|
DCUWeightOnlyLinearMethod,
|
|
)
|
|
|
|
return DCUWeightOnlyLinearMethod(self)
|
|
elif current_platform.is_maca():
|
|
if isinstance(layer, FusedMoE):
|
|
from fastdeploy.model_executor.layers.backends import (
|
|
MetaxTritonWeightOnlyMoEMethod,
|
|
)
|
|
|
|
return MetaxTritonWeightOnlyMoEMethod(self)
|
|
else:
|
|
|
|
return GPUWeightOnlyLinearMethod(self)
|
|
else:
|
|
if isinstance(layer, FusedMoE):
|
|
if layer.use_method == "cutlass":
|
|
from fastdeploy.model_executor.layers.moe.fused_moe_cutlass_backend import (
|
|
CutlassWeightOnlyMoEMethod,
|
|
)
|
|
|
|
return CutlassWeightOnlyMoEMethod(self)
|
|
elif layer.use_method == "triton":
|
|
from fastdeploy.model_executor.layers.moe.fused_moe_triton_backend import (
|
|
TritonWeightOnlyMoEMethod,
|
|
)
|
|
|
|
return TritonWeightOnlyMoEMethod(self)
|
|
elif layer.use_method == "marlin":
|
|
from fastdeploy.model_executor.layers.moe.fused_moe_marlin_backend import (
|
|
MarlinWeightOnlyMoEMethod,
|
|
)
|
|
|
|
return MarlinWeightOnlyMoEMethod(self)
|
|
else:
|
|
raise ValueError(f"Unsupported MOE backend {layer.use_method}")
|
|
else:
|
|
if (
|
|
self.name() == "wint4"
|
|
and envs.FD_USE_MACHETE == "1"
|
|
and get_sm_version() == 90
|
|
and layer.weight_shape[1]
|
|
and layer.weight_shape[1] % 128 == 0
|
|
):
|
|
return MacheteWeightOnlyLinearMethod(self)
|
|
return GPUWeightOnlyLinearMethod(self)
|
|
|
|
|
|
class WINT8Config(WeightOnlyConfig):
|
|
"""
|
|
weight only int8 config
|
|
"""
|
|
|
|
def __init__(self) -> None:
|
|
super().__init__("weight_only_int8")
|
|
|
|
@classmethod
|
|
def from_config(cls, config: dict) -> "WINT8Config":
|
|
return cls()
|
|
|
|
def name(self) -> str:
|
|
return "wint8"
|
|
|
|
|
|
class WINT4Config(WeightOnlyConfig):
|
|
"""
|
|
weight only int4 config
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
) -> None:
|
|
super().__init__("weight_only_int4")
|
|
|
|
@classmethod
|
|
def from_config(cls, config: dict) -> "WINT4Config":
|
|
return cls()
|
|
|
|
def name(self) -> str:
|
|
return "wint4"
|
|
|
|
|
|
class WeightOnlyLinearMethod(QuantMethodBase):
|
|
"""
|
|
Weight only quantization method for linear layer
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
quant_config: WeightOnlyConfig,
|
|
) -> None:
|
|
super().__init__()
|
|
self.quant_config = quant_config
|
|
|
|
def create_weights(self, layer, **extra_weight_attrs):
|
|
if layer.fd_config.load_config.load_choices == "default_v1":
|
|
layer.weight = layer.create_parameter(
|
|
shape=layer.weight_shape,
|
|
dtype=layer.weight_dtype,
|
|
is_bias=False,
|
|
default_initializer=paddle.nn.initializer.Constant(0),
|
|
)
|
|
quant_attrs = extra_weight_attrs
|
|
if isinstance(layer, MergedColumnParallelLinear) or isinstance(layer, QKVParallelLinear):
|
|
quant_attrs = {
|
|
**extra_weight_attrs,
|
|
"tensor_track": TensorTracker(
|
|
shape=layer.weight_shape, output_dim=extra_weight_attrs.get("output_dim")
|
|
),
|
|
}
|
|
set_weight_attrs(
|
|
layer.weight,
|
|
quant_attrs,
|
|
)
|
|
else:
|
|
# The scale shape should be equal to the output dim of weight using Per-Channel Quantization.
|
|
weight_scale_shape = [layer.weight_shape[1]]
|
|
layer.weight_shape.reverse()
|
|
if self.quant_config.name() == "wint4":
|
|
layer.weight_shape[0] //= 2
|
|
layer.weight_dtype = "int8"
|
|
layer.weight = layer.create_parameter(
|
|
shape=layer.weight_shape,
|
|
dtype=layer.weight_dtype,
|
|
is_bias=False,
|
|
default_initializer=paddle.nn.initializer.Constant(0),
|
|
)
|
|
|
|
output_dim = extra_weight_attrs.get("output_dim")
|
|
output_dim = not output_dim
|
|
weight_loader = extra_weight_attrs.get("weight_loader")
|
|
set_weight_attrs(
|
|
layer.weight,
|
|
{
|
|
"weight_loader": weight_loader,
|
|
"output_dim": output_dim,
|
|
},
|
|
)
|
|
|
|
layer.weight_scale = layer.create_parameter(
|
|
shape=weight_scale_shape,
|
|
dtype=layer._dtype,
|
|
is_bias=False,
|
|
)
|
|
|
|
set_weight_attrs(
|
|
layer.weight_scale,
|
|
{
|
|
"weight_loader": weight_loader,
|
|
"output_dim": output_dim,
|
|
},
|
|
)
|
|
|
|
def process_weights_after_loading(self, layer) -> None:
|
|
if not layer.fd_config.load_config.load_choices == "default_v1":
|
|
return
|
|
quanted_weight_tensor, weight_scale_tensor = weight_quantize(
|
|
layer.weight,
|
|
algo=self.quant_config.algo,
|
|
arch=self.quant_config.weight_only_linear_arch,
|
|
)
|
|
|
|
free_tensor(layer.weight)
|
|
|
|
layer.weight = layer.create_parameter(
|
|
shape=quanted_weight_tensor.shape,
|
|
dtype="int8",
|
|
is_bias=False,
|
|
default_initializer=paddle.nn.initializer.Constant(0),
|
|
)
|
|
layer.weight_scale = layer.create_parameter(
|
|
shape=weight_scale_tensor.shape,
|
|
dtype=layer._dtype,
|
|
is_bias=False,
|
|
default_initializer=paddle.nn.initializer.Constant(0),
|
|
)
|
|
layer.weight.copy_(quanted_weight_tensor, False)
|
|
layer.weight_scale.copy_(weight_scale_tensor, False)
|
|
|
|
@abstractmethod
|
|
def process_loaded_weights(self, layer, weights) -> None:
|
|
raise NotImplementedError
|
|
|
|
def apply(self, layer, x):
|
|
if current_platform.is_maca():
|
|
linear_out = weight_only_linear(
|
|
x,
|
|
weight=layer.weight,
|
|
bias=layer.bias if layer.add_bias else None,
|
|
weight_scale=layer.weight_scale,
|
|
weight_dtype=("int8" if self.quant_config.name() == "wint8" else "int4"),
|
|
arch=80,
|
|
)
|
|
else:
|
|
linear_out = weight_only_linear(
|
|
x,
|
|
weight=layer.weight,
|
|
bias=layer.bias if layer.add_bias else None,
|
|
weight_scale=layer.weight_scale,
|
|
weight_dtype=("int8" if self.quant_config.name() == "wint8" else "int4"),
|
|
arch=self.quant_config.weight_only_linear_arch,
|
|
)
|
|
return linear_out
|
|
|
|
|
|
class GPUWeightOnlyLinearMethod(WeightOnlyLinearMethod):
|
|
"""
|
|
Weight only quantization method for linear layer on GPU
|
|
The weights are loaded in the BF16 numerical format. After loading, the quantization coefficients will be computed,
|
|
and the weights will be quantized to int8 or int4.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
quant_config: WeightOnlyConfig,
|
|
) -> None:
|
|
super().__init__(quant_config)
|
|
|
|
def process_prequanted_weights(self, layer, state_dict, is_rearrange: bool = False) -> None:
|
|
"""
|
|
Process pre-quantized weights before applying them to the model
|
|
Args:
|
|
layer: The layer that owns the weights
|
|
quant_weight: The quantized weights
|
|
weight_scale: The scale of the quantized weights
|
|
"""
|
|
quant_weight = get_tensor(state_dict.pop(layer.weight_key))
|
|
weight_scale = get_tensor(state_dict.pop(layer.weight_scale_key))
|
|
layer.weight.set_value(quant_weight)
|
|
layer.weight_scale.set_value(weight_scale.astype(paddle.get_default_dtype()))
|
|
|
|
def process_loaded_weights(self, layer, weight) -> None:
|
|
|
|
quanted_weight_tensor, weight_scale_tensor = weight_quantize(
|
|
weight,
|
|
algo=self.quant_config.algo,
|
|
arch=self.quant_config.weight_only_linear_arch,
|
|
)
|
|
if current_platform.is_maca():
|
|
quanted_weight_tensor = paddle.transpose(quanted_weight_tensor, [1, 0])
|
|
layer.weight.set_value(quanted_weight_tensor)
|
|
layer.weight_scale.set_value(weight_scale_tensor.astype(paddle.get_default_dtype()))
|
|
|
|
|
|
class MacheteWeightOnlyLinearMethod(WeightOnlyLinearMethod):
|
|
"""
|
|
Weight only quantization method for linear layer on GPU using Machete
|
|
The weights are loaded in the BF16 numerical format. After loading, the quantization coefficients will be computed,
|
|
and the weights will be quantized to int8 or int4.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
quant_config: WeightOnlyConfig,
|
|
) -> None:
|
|
super().__init__(quant_config)
|
|
|
|
def create_weights(self, layer, **extra_weight_attrs):
|
|
|
|
assert layer.bias is None, "Machete weight only linear method does not support bias."
|
|
assert self.quant_config.name() == "wint4", "Machete weight only linear method only supports wint4."
|
|
|
|
# The scale shape should be equal to the output dim of weight using Per-Channel Quantization.
|
|
weight_scale_shape = [1, layer.weight_shape[1]]
|
|
|
|
# layer.weight_shape.reverse()
|
|
if self.quant_config.name() == "wint4":
|
|
layer.weight_shape[0] //= 8
|
|
layer.weight_dtype = "int32"
|
|
|
|
layer.weight = layer.create_parameter(
|
|
shape=layer.weight_shape,
|
|
dtype=layer.weight_dtype,
|
|
is_bias=False,
|
|
default_initializer=paddle.nn.initializer.Constant(0),
|
|
)
|
|
|
|
layer.weight_scale = layer.create_parameter(
|
|
shape=weight_scale_shape,
|
|
dtype=layer._dtype,
|
|
is_bias=False,
|
|
)
|
|
|
|
def process_prequanted_weights(self, layer, state_dict) -> None:
|
|
pass
|
|
|
|
def process_loaded_weights(self, layer, weight) -> None:
|
|
from fastdeploy.model_executor.layers.quantization.ops import (
|
|
machete_quantize_and_pack,
|
|
)
|
|
|
|
quanted_weight_tensor, weight_scale_tensor = machete_quantize_and_pack(
|
|
w=weight,
|
|
atype=layer._dtype,
|
|
quant_type="uint4b8",
|
|
)
|
|
layer.weight.set_value(quanted_weight_tensor)
|
|
layer.weight_scale.set_value(weight_scale_tensor.astype(paddle.get_default_dtype()))
|
|
|
|
def apply(self, layer, x):
|
|
assert layer.bias is None, "Machete weight only linear method does not support bias."
|
|
assert self.quant_config.name() == "wint4", "Machete weight only linear method only supports wint4."
|
|
from fastdeploy.model_executor.layers.quantization.ops import machete_wint_mm
|
|
|
|
linear_out = machete_wint_mm(
|
|
x,
|
|
w_prepack=layer.weight,
|
|
w_g_s=layer.weight_scale,
|
|
weight_dtype="uint4b8",
|
|
)
|
|
|
|
return linear_out
|