Files
FastDeploy/fastdeploy/model_executor/layers/quantization/weight_only.py
Sunny-bot1 479c8b85d3 [Optimize]support machete weight only gemm (#3561)
* support machete weight only gemm

* add generate

* update

* fix

* change file location

* add sm_version limit

* fix

* fix

* fix ci

* fix coverage

* fix xpu
2025-08-28 09:49:58 +08:00

417 lines
14 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import os
from abc import abstractmethod
from typing import Optional
import paddle
from paddle.nn.quant import weight_only_linear, weight_quantize
from fastdeploy import envs
from fastdeploy.model_executor.layers.linear import (
MergedColumnParallelLinear,
QKVParallelLinear,
)
from fastdeploy.model_executor.utils import TensorTracker, free_tensor, set_weight_attrs
from fastdeploy.platforms import current_platform
from ..moe import FusedMoE
from ..utils import get_tensor
from .quant_base import QuantConfigBase, QuantMethodBase
def get_sm_version():
prop = paddle.device.cuda.get_device_properties()
cc = prop.major * 10 + prop.minor
return cc
class WeightOnlyConfig(QuantConfigBase):
"""
Quantization config for weight only
Args:
algo: The quant algorithm("weight_only_int8" or "weight_only_int4") used for weight only linear layer
"""
def __init__(
self,
algo: str,
) -> None:
super().__init__()
self.algo = algo
# arch (int): The compute arch for target device. For example, A100 is 80, v100 is 70,
# if you do not assign arch, we will get arch from your device, default: None.
self.weight_only_linear_arch = os.getenv("FLAGS_weight_only_linear_arch")
if self.weight_only_linear_arch is not None:
self.weight_only_linear_arch = int(self.weight_only_linear_arch)
self.quant_max_bound = 0
self.quant_min_bound = 0
self.quant_round_type = 0
def name(self) -> str:
return "weight_only"
@classmethod
def from_config(cls, config: dict) -> "WeightOnlyConfig":
algo = config["algo"]
return cls(algo)
def get_quant_method(self, layer) -> Optional[QuantMethodBase]:
if current_platform.is_xpu():
from fastdeploy.model_executor.layers.backends import (
XPUWeightOnlyLinearMethod,
)
from fastdeploy.model_executor.layers.moe.fused_moe_xpu_backend import (
XPUWeightOnlyMoEMethod,
)
if isinstance(layer, FusedMoE):
return XPUWeightOnlyMoEMethod(self)
else:
return XPUWeightOnlyLinearMethod(self)
elif current_platform.is_gcu():
from fastdeploy.model_executor.layers.backends import (
GCUWeightOnlyLinearMethod,
GCUWeightOnlyMoEMethod,
)
if isinstance(layer, FusedMoE):
return GCUWeightOnlyMoEMethod(self)
else:
return GCUWeightOnlyLinearMethod(self)
elif current_platform.is_dcu():
if isinstance(layer, FusedMoE):
from fastdeploy.model_executor.layers.backends import (
DCUTritonWeightOnlyMoEMethod,
)
return DCUTritonWeightOnlyMoEMethod(self)
else:
from fastdeploy.model_executor.layers.backends import (
DCUWeightOnlyLinearMethod,
)
return DCUWeightOnlyLinearMethod(self)
elif current_platform.is_maca():
if isinstance(layer, FusedMoE):
from fastdeploy.model_executor.layers.backends import (
MetaxTritonWeightOnlyMoEMethod,
)
return MetaxTritonWeightOnlyMoEMethod(self)
else:
return GPUWeightOnlyLinearMethod(self)
else:
if isinstance(layer, FusedMoE):
if layer.use_method == "cutlass":
from fastdeploy.model_executor.layers.moe.fused_moe_cutlass_backend import (
CutlassWeightOnlyMoEMethod,
)
return CutlassWeightOnlyMoEMethod(self)
elif layer.use_method == "triton":
from fastdeploy.model_executor.layers.moe.fused_moe_triton_backend import (
TritonWeightOnlyMoEMethod,
)
return TritonWeightOnlyMoEMethod(self)
elif layer.use_method == "marlin":
from fastdeploy.model_executor.layers.moe.fused_moe_marlin_backend import (
MarlinWeightOnlyMoEMethod,
)
return MarlinWeightOnlyMoEMethod(self)
else:
raise ValueError(f"Unsupported MOE backend {layer.use_method}")
else:
if (
self.name() == "wint4"
and envs.FD_USE_MACHETE == "1"
and get_sm_version() == 90
and layer.weight_shape[1]
and layer.weight_shape[1] % 128 == 0
):
return MacheteWeightOnlyLinearMethod(self)
return GPUWeightOnlyLinearMethod(self)
class WINT8Config(WeightOnlyConfig):
"""
weight only int8 config
"""
def __init__(self) -> None:
super().__init__("weight_only_int8")
@classmethod
def from_config(cls, config: dict) -> "WINT8Config":
return cls()
def name(self) -> str:
return "wint8"
class WINT4Config(WeightOnlyConfig):
"""
weight only int4 config
"""
def __init__(
self,
) -> None:
super().__init__("weight_only_int4")
@classmethod
def from_config(cls, config: dict) -> "WINT4Config":
return cls()
def name(self) -> str:
return "wint4"
class WeightOnlyLinearMethod(QuantMethodBase):
"""
Weight only quantization method for linear layer
"""
def __init__(
self,
quant_config: WeightOnlyConfig,
) -> None:
super().__init__()
self.quant_config = quant_config
def create_weights(self, layer, **extra_weight_attrs):
if layer.fd_config.load_config.load_choices == "default_v1":
layer.weight = layer.create_parameter(
shape=layer.weight_shape,
dtype=layer.weight_dtype,
is_bias=False,
default_initializer=paddle.nn.initializer.Constant(0),
)
quant_attrs = extra_weight_attrs
if isinstance(layer, MergedColumnParallelLinear) or isinstance(layer, QKVParallelLinear):
quant_attrs = {
**extra_weight_attrs,
"tensor_track": TensorTracker(
shape=layer.weight_shape, output_dim=extra_weight_attrs.get("output_dim")
),
}
set_weight_attrs(
layer.weight,
quant_attrs,
)
else:
# The scale shape should be equal to the output dim of weight using Per-Channel Quantization.
weight_scale_shape = [layer.weight_shape[1]]
layer.weight_shape.reverse()
if self.quant_config.name() == "wint4":
layer.weight_shape[0] //= 2
layer.weight_dtype = "int8"
layer.weight = layer.create_parameter(
shape=layer.weight_shape,
dtype=layer.weight_dtype,
is_bias=False,
default_initializer=paddle.nn.initializer.Constant(0),
)
output_dim = extra_weight_attrs.get("output_dim")
output_dim = not output_dim
weight_loader = extra_weight_attrs.get("weight_loader")
set_weight_attrs(
layer.weight,
{
"weight_loader": weight_loader,
"output_dim": output_dim,
},
)
layer.weight_scale = layer.create_parameter(
shape=weight_scale_shape,
dtype=layer._dtype,
is_bias=False,
)
set_weight_attrs(
layer.weight_scale,
{
"weight_loader": weight_loader,
"output_dim": output_dim,
},
)
def process_weights_after_loading(self, layer) -> None:
if not layer.fd_config.load_config.load_choices == "default_v1":
return
quanted_weight_tensor, weight_scale_tensor = weight_quantize(
layer.weight,
algo=self.quant_config.algo,
arch=self.quant_config.weight_only_linear_arch,
)
free_tensor(layer.weight)
layer.weight = layer.create_parameter(
shape=quanted_weight_tensor.shape,
dtype="int8",
is_bias=False,
default_initializer=paddle.nn.initializer.Constant(0),
)
layer.weight_scale = layer.create_parameter(
shape=weight_scale_tensor.shape,
dtype=layer._dtype,
is_bias=False,
default_initializer=paddle.nn.initializer.Constant(0),
)
layer.weight.copy_(quanted_weight_tensor, False)
layer.weight_scale.copy_(weight_scale_tensor, False)
@abstractmethod
def process_loaded_weights(self, layer, weights) -> None:
raise NotImplementedError
def apply(self, layer, x):
if current_platform.is_maca():
linear_out = weight_only_linear(
x,
weight=layer.weight,
bias=layer.bias if layer.add_bias else None,
weight_scale=layer.weight_scale,
weight_dtype=("int8" if self.quant_config.name() == "wint8" else "int4"),
arch=80,
)
else:
linear_out = weight_only_linear(
x,
weight=layer.weight,
bias=layer.bias if layer.add_bias else None,
weight_scale=layer.weight_scale,
weight_dtype=("int8" if self.quant_config.name() == "wint8" else "int4"),
arch=self.quant_config.weight_only_linear_arch,
)
return linear_out
class GPUWeightOnlyLinearMethod(WeightOnlyLinearMethod):
"""
Weight only quantization method for linear layer on GPU
The weights are loaded in the BF16 numerical format. After loading, the quantization coefficients will be computed,
and the weights will be quantized to int8 or int4.
"""
def __init__(
self,
quant_config: WeightOnlyConfig,
) -> None:
super().__init__(quant_config)
def process_prequanted_weights(self, layer, state_dict, is_rearrange: bool = False) -> None:
"""
Process pre-quantized weights before applying them to the model
Args:
layer: The layer that owns the weights
quant_weight: The quantized weights
weight_scale: The scale of the quantized weights
"""
quant_weight = get_tensor(state_dict.pop(layer.weight_key))
weight_scale = get_tensor(state_dict.pop(layer.weight_scale_key))
layer.weight.set_value(quant_weight)
layer.weight_scale.set_value(weight_scale.astype(paddle.get_default_dtype()))
def process_loaded_weights(self, layer, weight) -> None:
quanted_weight_tensor, weight_scale_tensor = weight_quantize(
weight,
algo=self.quant_config.algo,
arch=self.quant_config.weight_only_linear_arch,
)
if current_platform.is_maca():
quanted_weight_tensor = paddle.transpose(quanted_weight_tensor, [1, 0])
layer.weight.set_value(quanted_weight_tensor)
layer.weight_scale.set_value(weight_scale_tensor.astype(paddle.get_default_dtype()))
class MacheteWeightOnlyLinearMethod(WeightOnlyLinearMethod):
"""
Weight only quantization method for linear layer on GPU using Machete
The weights are loaded in the BF16 numerical format. After loading, the quantization coefficients will be computed,
and the weights will be quantized to int8 or int4.
"""
def __init__(
self,
quant_config: WeightOnlyConfig,
) -> None:
super().__init__(quant_config)
def create_weights(self, layer, **extra_weight_attrs):
assert layer.bias is None, "Machete weight only linear method does not support bias."
assert self.quant_config.name() == "wint4", "Machete weight only linear method only supports wint4."
# The scale shape should be equal to the output dim of weight using Per-Channel Quantization.
weight_scale_shape = [1, layer.weight_shape[1]]
# layer.weight_shape.reverse()
if self.quant_config.name() == "wint4":
layer.weight_shape[0] //= 8
layer.weight_dtype = "int32"
layer.weight = layer.create_parameter(
shape=layer.weight_shape,
dtype=layer.weight_dtype,
is_bias=False,
default_initializer=paddle.nn.initializer.Constant(0),
)
layer.weight_scale = layer.create_parameter(
shape=weight_scale_shape,
dtype=layer._dtype,
is_bias=False,
)
def process_prequanted_weights(self, layer, state_dict) -> None:
pass
def process_loaded_weights(self, layer, weight) -> None:
from fastdeploy.model_executor.layers.quantization.ops import (
machete_quantize_and_pack,
)
quanted_weight_tensor, weight_scale_tensor = machete_quantize_and_pack(
w=weight,
atype=layer._dtype,
quant_type="uint4b8",
)
layer.weight.set_value(quanted_weight_tensor)
layer.weight_scale.set_value(weight_scale_tensor.astype(paddle.get_default_dtype()))
def apply(self, layer, x):
assert layer.bias is None, "Machete weight only linear method does not support bias."
assert self.quant_config.name() == "wint4", "Machete weight only linear method only supports wint4."
from fastdeploy.model_executor.layers.quantization.ops import machete_wint_mm
linear_out = machete_wint_mm(
x,
w_prepack=layer.weight,
w_g_s=layer.weight_scale,
weight_dtype="uint4b8",
)
return linear_out