Files
FastDeploy/fastdeploy/model_executor/layers/normalization.py
Yuanle Liu 56e2d7e668 adaptive rms_norm's dtype (#3617)
* adaptive rms_norm's dtype

* adaptive rms_norm's dtype

* add approve coverage

---------

Co-authored-by: liuyuanle <liuyuanle@baidu.com>
2025-08-26 15:29:15 +08:00

340 lines
13 KiB
Python

"""
# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
from typing import Callable, Dict, Optional
import numpy as np
import paddle
from paddle import nn
from fastdeploy.platforms import current_platform
if current_platform.is_gcu():
from fastdeploy.model_executor.ops.gcu import fused_add_rms_norm, rms_norm
else:
from paddle.incubate.nn.functional import fused_layer_norm, fused_rms_norm
from fastdeploy.config import FDConfig
from .utils import get_tensor
class RMSNorm(nn.Layer):
"""
Normalization layer.
"""
def __init__(
self,
fd_config: FDConfig,
hidden_size: int,
eps: float = 1e-5,
prefix: str = "",
bias: paddle.Tensor = None,
quant_scale: float = None,
begin_norm_axis: int = 1,
dtype: str = None,
) -> None:
"""
Initializes the RMSNormalization layer.
Args:
fd_config (FDConfig): Arguments related to inference, containing
attributes such as weight_dtype, act_dtype, mp_size, hidden_size, head_dim,
num_attention_heads, and ffn_hidden_size.
hidden_size (int) : size of hidden state.
eps:(float, optional): Small value added to the variance to avoid division by zero. Defaults to 1e-5.
prefix(str,optional):The name of current layer. Defaults to "".
bias (paddle.Tensor,optional): Initial bias value for the linear layer (if used). Defaults to None.
quant_scale(float,optional):Quantization scale, used in quantization scenarios. Defaults to -1, indicating no quantization.
begin_norm_axis (int, optional): The axis along which to perform normalization. Defaults to 1.
Raises:
NotImplementedError: If the specified norm_type is not supported.
"""
super().__init__()
self.fd_config = fd_config
self.prefix: str = prefix
self.hidden_size: int = hidden_size
if len(prefix) == 0:
self.weight_key: Optional[str] = None
else:
self.weight_key: Optional[str] = f"{prefix}.weight"
self.with_weight: bool = self.weight_key is not None
self.eps: float = eps
if current_platform.is_gcu():
self.norm_func: Callable = fused_add_rms_norm
else:
self.norm_func: Callable = fused_rms_norm
self.bias: Optional[paddle.Tensor] = bias
self.quant_scale: Optional[float] = quant_scale
self._norm_weight_dtype = dtype
if self._norm_weight_dtype is None:
self._norm_weight_dtype = self._helper.get_default_dtype()
else:
assert dtype in [
"float32",
"bfloat16",
"float16",
], f"Unsupported dtype: {dtype}. Must be one of: float32, bfloat16, float16"
self.quant_round_type: int = self.fd_config.quant_config.quant_round_type if fd_config.quant_config else 0
self.quant_max_bound: int = self.fd_config.quant_config.quant_max_bound if fd_config.quant_config else 0
self.quant_min_bound: int = self.fd_config.quant_config.quant_min_bound if fd_config.quant_config else 0
self.begin_norm_axis: int = begin_norm_axis
self.init_weight()
def init_weight(self):
"""
Initialize the weights and biases.
"""
self.weight = None
if self.with_weight:
self.weight = self.create_parameter(
shape=[self.hidden_size],
default_initializer=nn.initializer.Constant(value=1.0),
dtype=self._norm_weight_dtype,
)
def load_state_dict(self, state_dict: Dict[str, paddle.Tensor | np.ndarray]):
"""
Load the checkpoint state dictionary into the layer.
Args:
state_dict (dict): A dictionary containing the checkpoint weights and biases.
"""
# weight
weight_tensor = get_tensor(state_dict.pop(self.weight_key))
self.weight.set_value(weight_tensor.astype(self._norm_weight_dtype))
def forward(self, x, residual_input: Optional[paddle.Tensor] = None) -> paddle.Tensor:
"""
Defines the forward computation of the layer.
Args:
x (paddle.Tensor): Input tensor to be normalized.
residual_input (paddle.Tensor, optional): Residual input tensor for residual connection.
Defaults to None. If provided, the normalization layer will also return the residual
output for further computation.
Returns:
paddle.Tensor or tuple of paddle.Tensor:
- If `residual_input` is None, returns the normalized output tensor.
- If `residual_input` is provided, returns a tuple of (normalized_output, residual_output).
The `residual_output` is the result of applying the normalization and possibly other
operations (like linear transformation) on the `residual_input`.
"""
x_dtype = x.dtype
x = x.astype(self.weight.dtype)
if residual_input is not None:
residual_input_dtype = residual_input.dtype
residual_input = residual_input.astype(self.weight.dtype)
if current_platform.is_gcu():
if residual_input is None:
norm_out = rms_norm(x, self.weight, self.eps)
return norm_out.astype(x_dtype)
norm_out = self.norm_func(x, residual_input, self.weight, self.eps)
else:
norm_out = self.norm_func(
x,
norm_weight=self.weight,
norm_bias=None,
epsilon=self.eps,
begin_norm_axis=self.begin_norm_axis,
bias=self.bias,
residual=residual_input,
quant_scale=(-1 if self.quant_scale is None else self.quant_scale),
quant_round_type=self.quant_round_type,
quant_max_bound=self.quant_max_bound,
quant_min_bound=self.quant_min_bound,
)
if residual_input is not None:
return norm_out[0].astype(x_dtype), norm_out[1].astype(residual_input_dtype)
else:
return norm_out[0].astype(x_dtype)
class LayerNorm(nn.Layer):
"""
Initializes the LayerNormalization layer
"""
def __init__(
self,
fd_config: FDConfig,
hidden_size: int,
eps: float = 1e-5,
prefix="",
bias: paddle.Tensor = None,
quant_scale: float = None,
with_bias: bool = False,
):
"""
Initializes the normalization layer.
Args:
fd_config (FDConfig): Arguments related to inference, containing
attributes such as weight_dtype, act_dtype, mp_size, hidden_size, head_dim,
num_attention_heads, and ffn_hidden_size.
hidden_size (int) : size of hidden state.
eps:(float, optional): Small value added to the variance to avoid division by zero. Defaults to 1e-5.
prefix (str): Unique name of the layer, used for naming internal attributes,
you can give it any name you like.
bias (float, optional): Initial bias value for the linear layer (if used). Defaults to None.
quant_scale(float,optional):Quantization scale, used in quantization scenarios. Defaults to -1, indicating no quantization.
with_bias (bool):Whether to include bias or not. Defaults to False.
Raises:
NotImplementedError: If the specified norm_type is not supported.
"""
super().__init__()
self.fd_config = fd_config
self.prefix: str = prefix
self.hidden_size: int = hidden_size
if len(prefix) == 0:
self.weight_key: Optional[str] = None
else:
self.weight_key: Optional[str] = f"{prefix}.weight"
self.with_weight: bool = self.weight_key is not None
self.bias_key: str = f"{prefix}.bias"
self.with_bias: bool = with_bias
self.eps: float = eps
self.quant_scale: float = quant_scale
if current_platform.is_gcu():
self.norm_func: Callable = paddle.nn.functional.layer_norm
else:
self.norm_func: Callable = fused_layer_norm
self.bias: Optional[paddle.Tensor] = bias
self._norm_weight_dtype: str = "float32"
self.quant_round_type: int = self.fd_config.quant_config.quant_round_type if fd_config.quant_config else 0
self.quant_max_bound: int = self.fd_config.quant_config.quant_max_bound if fd_config.quant_config else 0
self.quant_min_bound: int = self.fd_config.quant_config.quant_min_bound if fd_config.quant_config else 0
self.init_weight()
def init_weight(self):
"""
Initialize the weights and biases.
"""
self.weight = None
if self.with_weight:
self.weight = self.create_parameter(
shape=[self.hidden_size],
default_initializer=nn.initializer.Constant(value=1.0),
dtype=self._norm_weight_dtype,
)
self.bias = None
if self.with_bias:
self.bias = self.create_parameter(
shape=[self.hidden_size],
is_bias=True,
dtype=self._norm_weight_dtype,
)
def load_state_dict(self, state_dict: Dict[str, paddle.Tensor | np.ndarray]):
"""
Load the checkpoint state dictionary into the layer.
Args:
state_dict (dict): A dictionary containing the checkpoint weights and biases.
"""
# weight
weight_tensor = paddle.cast(get_tensor(state_dict.pop(self.weight_key)), self._norm_weight_dtype)
self.weight.set_value(weight_tensor)
# bias
if self.with_bias:
bias_tensor = paddle.cast(
get_tensor(state_dict.pop(self.bias_key)),
self._norm_weight_dtype,
)
self.bias.set_value(bias_tensor)
def forward(self, x, residual_input: Optional[paddle.Tensor] = None) -> paddle.Tensor:
"""
Defines the forward computation of the layer.
Args:
x (paddle.Tensor): Input tensor to be normalized.
residual_input (paddle.Tensor, optional): Residual input tensor for residual connection.
Defaults to None. If provided, the normalization layer will also return the residual
output for further computation.
Returns:
paddle.Tensor or tuple of paddle.Tensor:
- If `residual_input` is None, returns the normalized output tensor.
- If `residual_input` is provided, returns a tuple of (normalized_output, residual_output).
The `residual_output` is the result of applying the normalization and possibly other
operations (like linear transformation) on the `residual_input`.
"""
if current_platform.is_iluvatar():
if self.weight is None and self.bias is None:
out = x
if self.bias is not None:
out += self.bias
if residual_input is not None:
out += residual_input
return out, out
else:
return out
else:
raise NotImplementedError("Iluvatar does not support yet!")
if current_platform.is_gcu():
if residual_input is not None:
y = x + residual_input
out = self.norm_func(
x=y,
normalized_shape=y.shape[1:],
weight=self.weight,
bias=self.bias,
epsilon=self.eps,
)
return out, y
else:
out = self.norm_func(
x=x,
normalized_shape=x.shape[1:],
weight=self.weight,
bias=self.bias,
epsilon=self.eps,
)
return out
else:
norm_out = self.norm_func(
x,
norm_weight=self.weight,
norm_bias=self.bias,
epsilon=self.eps,
begin_norm_axis=1,
bias=self.bias,
residual=residual_input,
quant_scale=(-1 if self.quant_scale is None else self.quant_scale),
quant_round_type=self.quant_round_type,
quant_max_bound=self.quant_max_bound,
quant_min_bound=self.quant_min_bound,
)
if residual_input is not None:
return norm_out[0], norm_out[1]
else:
return norm_out[0]