mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-09-26 20:41:53 +08:00
125 lines
4.4 KiB
Python
125 lines
4.4 KiB
Python
"""
|
|
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
|
|
import paddle
|
|
from paddle import nn
|
|
from paddle.distributed import fleet
|
|
|
|
from .utils import get_tensor
|
|
|
|
|
|
class ParallelEHProjection(nn.Layer):
|
|
"""
|
|
"Parallelized Embedding Hidden States Projection.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
fd_config,
|
|
num_embeddings,
|
|
embedding_dim,
|
|
prefix="",
|
|
with_bias=False,
|
|
):
|
|
"""
|
|
Parallelized Embedding Hidden States Projection.
|
|
|
|
Args:
|
|
fd_config (FDConfig): Arguments related to inference, containing
|
|
attributes such as weight_dtype, act_dtype, mp_size, hidden_size, head_dim,
|
|
num_attention_heads, and ffn_hidden_size.
|
|
num_embeddings (int): vocabulary size.
|
|
embedding_dim (int): size of hidden state.
|
|
prefix (str): full name of the layer in the state dict
|
|
"""
|
|
super(ParallelEHProjection, self).__init__()
|
|
self.weight_key = prefix + ".weight"
|
|
if with_bias:
|
|
self.bias_key = prefix + ".bias"
|
|
else:
|
|
self.bias_key = None
|
|
self.use_ep = fd_config.parallel_config.use_ep
|
|
self.column_cut = True
|
|
|
|
ColumnParallelLinear = fleet.meta_parallel.ColumnParallelLinear
|
|
RowParallelLinear = fleet.meta_parallel.RowParallelLinear
|
|
|
|
if self.use_ep:
|
|
self.weight = self.create_parameter(
|
|
shape=[embedding_dim, num_embeddings],
|
|
dtype=paddle.get_default_dtype(),
|
|
is_bias=False,
|
|
)
|
|
else:
|
|
if self.column_cut:
|
|
need_gather = True
|
|
self.linear = ColumnParallelLinear(
|
|
embedding_dim,
|
|
num_embeddings,
|
|
mp_group=fleet.get_hybrid_communicate_group().get_model_parallel_group(),
|
|
weight_attr=None,
|
|
has_bias=True if self.bias_key is not None else False,
|
|
gather_output=need_gather,
|
|
fuse_matmul_bias=False, # False diff更小
|
|
)
|
|
else:
|
|
self.linear = RowParallelLinear(
|
|
embedding_dim,
|
|
num_embeddings,
|
|
mp_group=fleet.get_hybrid_communicate_group().get_model_parallel_group(),
|
|
weight_attr=None,
|
|
has_bias=True if self.bias_key is not None else False,
|
|
input_is_parallel=False,
|
|
fuse_matmul_bias=False, # False diff更小
|
|
)
|
|
|
|
def load_state_dict(self, state_dict):
|
|
"""
|
|
Load the checkpoint state dictionary into the layer.
|
|
|
|
Args:
|
|
state_dict (dict): A dictionary containing the checkpoint weights and biases.
|
|
"""
|
|
|
|
if self.use_ep:
|
|
self.weight.set_value(get_tensor(state_dict.pop(self.weight_key)).astype(paddle.get_default_dtype()))
|
|
else:
|
|
weight_tensor = get_tensor(state_dict.pop(self.weight_key)).astype(paddle.get_default_dtype())
|
|
if self.linear.weight.shape != weight_tensor.shape:
|
|
weight_tensor = weight_tensor.transpose([1, 0])
|
|
self.linear.weight.set_value(weight_tensor)
|
|
|
|
if self.bias_key is not None:
|
|
bias = get_tensor(state_dict.pop(self.bias_key)).astype(paddle.get_default_dtype())
|
|
self.linear.bias.set_value(bias)
|
|
|
|
def forward(self, input):
|
|
"""
|
|
Defines the forward computation of the layer.
|
|
|
|
Args:
|
|
input (Tensor): The input tensor to the layer.
|
|
|
|
Returns:
|
|
Tensor: The output tensor after processing through the layer.
|
|
"""
|
|
logits = input
|
|
if self.use_ep:
|
|
logits = paddle.matmul(logits, self.weight)
|
|
else:
|
|
logits = self.linear(logits)
|
|
return logits
|