mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-09-26 12:31:27 +08:00

* support machete weight only gemm * add generate * update * fix * change file location * add sm_version limit * fix * fix * fix ci * fix coverage * fix xpu
1213 lines
52 KiB
C++
1213 lines
52 KiB
C++
// Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||
//
|
||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||
// you may not use this file except in compliance with the License.
|
||
// You may obtain a copy of the License at
|
||
//
|
||
// http://www.apache.org/licenses/LICENSE-2.0
|
||
//
|
||
// Unless required by applicable law or agreed to in writing, software
|
||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
// See the License for the specific language governing permissions and
|
||
// limitations under the License.
|
||
|
||
#include "paddle/extension.h"
|
||
#include "pybind11/pybind11.h"
|
||
namespace py = pybind11;
|
||
|
||
// 自定义异常类,用于处理CUDA错误
|
||
class CudaError : public std::exception {
|
||
public:
|
||
explicit CudaError(cudaError_t error) : error_(error) {}
|
||
|
||
const char *what() const noexcept override {
|
||
return cudaGetErrorString(error_);
|
||
}
|
||
|
||
private:
|
||
cudaError_t error_;
|
||
};
|
||
|
||
// 检查CUDA错误并抛出异常
|
||
void check_cuda_error(cudaError_t error) {
|
||
if (error != cudaSuccess) {
|
||
throw CudaError(error);
|
||
}
|
||
}
|
||
|
||
// 封装cudaHostAlloc的Python函数
|
||
uintptr_t cuda_host_alloc(size_t size,
|
||
unsigned int flags = cudaHostAllocDefault) {
|
||
void *ptr = nullptr;
|
||
check_cuda_error(cudaHostAlloc(&ptr, size, flags));
|
||
return reinterpret_cast<uintptr_t>(ptr);
|
||
}
|
||
|
||
// 封装cudaFreeHost的Python函数
|
||
void cuda_host_free(uintptr_t ptr) {
|
||
check_cuda_error(cudaFreeHost(reinterpret_cast<void *>(ptr)));
|
||
}
|
||
|
||
std::vector<paddle::Tensor> AppendAttention(
|
||
const paddle::Tensor &qkv, const paddle::Tensor &key_cache,
|
||
const paddle::Tensor &value_cache, const paddle::Tensor &seq_lens_encoder,
|
||
const paddle::Tensor &seq_lens_decoder,
|
||
const paddle::Tensor &seq_lens_this_time,
|
||
const paddle::Tensor &batch_id_per_token, const paddle::Tensor &cu_seqlens_q,
|
||
const paddle::Tensor &block_tables, const paddle::Tensor &encoder_batch_ids,
|
||
const paddle::Tensor &encoder_tile_ids_per_batch,
|
||
const paddle::Tensor &encoder_num_blocks,
|
||
const paddle::Tensor &kv_batch_ids,
|
||
const paddle::Tensor &kv_tile_ids_per_batch,
|
||
const paddle::Tensor &kv_num_blocks,
|
||
const paddle::Tensor &decoder_batch_ids,
|
||
const paddle::Tensor &decoder_tile_ids_per_batch,
|
||
const paddle::Tensor &decoder_num_blocks,
|
||
const paddle::Tensor &set_max_lengths, const paddle::Tensor &max_len_kv,
|
||
const paddle::optional<paddle::Tensor> &rotary_embs,
|
||
const paddle::optional<paddle::Tensor> &attn_mask,
|
||
const paddle::optional<paddle::Tensor> &qkv_bias,
|
||
const paddle::optional<paddle::Tensor> &qkv_out_scales,
|
||
const paddle::optional<paddle::Tensor> &cache_k_quant_scales,
|
||
const paddle::optional<paddle::Tensor> &cache_v_quant_scales,
|
||
const paddle::optional<paddle::Tensor> &cache_k_dequant_scales,
|
||
const paddle::optional<paddle::Tensor> &cache_v_dequant_scales,
|
||
const paddle::optional<paddle::Tensor> &cache_k_zp,
|
||
const paddle::optional<paddle::Tensor> &cache_v_zp,
|
||
const paddle::optional<paddle::Tensor> &out_linear_shifts,
|
||
const paddle::optional<paddle::Tensor> &out_linear_smooths,
|
||
const paddle::optional<paddle::Tensor> &mask_offset,
|
||
const paddle::optional<paddle::Tensor> &kv_signal_data,
|
||
const paddle::optional<paddle::Tensor>& q_norm_weight,
|
||
const paddle::optional<paddle::Tensor>& k_norm_weight,
|
||
const float rms_norm_eps,
|
||
const std::string &compute_dtype, const std::string &cache_quant_type_str,
|
||
const bool use_neox_rotary_style, const bool rope_3d,
|
||
const int max_input_length, const float quant_max_bound,
|
||
const float quant_min_bound, const float out_linear_in_scale,
|
||
const int encoder_block_shape_q, const int decoder_block_shape_q,
|
||
const int max_partition_size, const int encoder_max_partition_size,
|
||
const int speculate_max_draft_token_num, const bool causal,
|
||
const bool speculate_decoder);
|
||
|
||
std::vector<paddle::Tensor> GQARopeWriteCacheKernel(
|
||
const paddle::Tensor &qkv, const paddle::Tensor &key_cache,
|
||
const paddle::Tensor &value_cache, const paddle::Tensor &cu_seqlens_q,
|
||
const paddle::Tensor &cu_seqlens_k, const paddle::Tensor &rotary_embs,
|
||
const paddle::Tensor &seq_lens_this_time,
|
||
const paddle::Tensor &seq_lens_encoder,
|
||
const paddle::Tensor &seq_lens_decoder,
|
||
const paddle::Tensor &batch_id_per_token,
|
||
const paddle::Tensor &block_tables, const paddle::Tensor &kv_batch_ids,
|
||
const paddle::Tensor &kv_tile_ids, const paddle::Tensor &kv_num_blocks,
|
||
const paddle::Tensor &cache_batch_ids, const paddle::Tensor &cache_tile_ids,
|
||
const paddle::Tensor &cache_num_blocks,
|
||
const paddle::optional<paddle::Tensor> &cache_k_quant_scales,
|
||
const paddle::optional<paddle::Tensor> &cache_v_quant_scales,
|
||
const paddle::optional<paddle::Tensor> &cache_k_dequant_scales,
|
||
const paddle::optional<paddle::Tensor> &cache_v_dequant_scales,
|
||
const paddle::optional<paddle::Tensor> &cache_k_zp,
|
||
const paddle::optional<paddle::Tensor> &cache_v_zp,
|
||
const paddle::optional<paddle::Tensor> &kv_signal_data,
|
||
const int kv_token_num, const int max_seq_len,
|
||
const std::string &cache_quant_type,
|
||
const bool rope_3d);
|
||
|
||
std::vector<paddle::Tensor>
|
||
PreCacheLenConcat(const paddle::Tensor &seq_lens_decoder,
|
||
const paddle::Tensor &seq_lens_this_time,
|
||
const int max_dec_len, const int block_size);
|
||
|
||
paddle::Tensor FusedExpertMoeFunc(
|
||
const paddle::Tensor &input, const paddle::Tensor &gate_weight,
|
||
const paddle::Tensor &up_gate_proj_weight, const paddle::Tensor &down_proj_weight,
|
||
const paddle::optional<paddle::Tensor> &up_gate_proj_bias,
|
||
const paddle::optional<paddle::Tensor> &up_gate_proj_scale,
|
||
const paddle::optional<paddle::Tensor> &down_proj_bias,
|
||
const paddle::optional<paddle::Tensor> &down_proj_scale,
|
||
const std::string &quant_method, const int moe_topk,
|
||
const bool norm_topk_prob, const bool group_moe);
|
||
|
||
std::vector<paddle::Tensor> MacheteMMKernel(
|
||
paddle::Tensor const& A, paddle::Tensor const& B,
|
||
paddle::optional<paddle::Tensor> const& maybe_group_scales,
|
||
paddle::optional<paddle::Tensor> const& maybe_group_zeros,
|
||
paddle::optional<paddle::Tensor> const& maybe_channel_scales,
|
||
paddle::optional<paddle::Tensor> const& maybe_token_scales,
|
||
std::string const& b_type_str,
|
||
std::string const& maybe_out_type_str,
|
||
int64_t const& maybe_group_size,
|
||
std::string const& maybe_schedule);
|
||
|
||
std::vector<paddle::Tensor> MachetePrepackBKernel(
|
||
paddle::Tensor const& B, std::string const& a_type_str, std::string const& b_type_str,
|
||
std::string const& maybe_group_scales_type_str);
|
||
|
||
std::vector<std::string> MacheteSupportedSchedules(
|
||
std::string const& a_type_str, std::string const& b_type_str);
|
||
|
||
std::vector<paddle::Tensor> MoeExpertDispatch(
|
||
const paddle::Tensor &input, const paddle::Tensor &gating_output,
|
||
const paddle::optional<paddle::Tensor> &gating_correction_bias,
|
||
const paddle::optional<paddle::Tensor> &w4a8_in_scale, const int moe_topk,
|
||
const bool group_moe, const bool topk_only_mode);
|
||
|
||
std::vector<paddle::Tensor>
|
||
MoETopKSelectKernel(const paddle::Tensor &gating_logits,
|
||
const paddle::optional<paddle::Tensor> &bias,
|
||
const int moe_topk, const bool apply_norm_weight,
|
||
const bool enable_softmax_top_k_fused);
|
||
|
||
std::vector<paddle::Tensor>
|
||
MoERedundantTopKSelectKernel(const paddle::Tensor &gating_logits,
|
||
const paddle::Tensor &expert_id_to_ep_rank_array,
|
||
const paddle::Tensor &expert_in_rank_num_list,
|
||
paddle::Tensor &tokens_per_expert_stats_list,
|
||
const paddle::optional<paddle::Tensor> &bias,
|
||
const int moe_topk, const bool apply_norm_weight,
|
||
const bool enable_softmax_top_k_fused,
|
||
const int redundant_ep_rank_num_plus_one);
|
||
|
||
std::vector<paddle::Tensor>
|
||
EPMoeExpertDispatch(const paddle::Tensor &input, const paddle::Tensor &topk_ids,
|
||
const paddle::Tensor &topk_weights,
|
||
const paddle::optional<paddle::Tensor> &up_gate_proj_in_scale,
|
||
const std::vector<int> &token_nums_per_expert,
|
||
const int token_nums_this_rank,
|
||
const std::string &moe_quant_type);
|
||
|
||
std::vector<paddle::Tensor> EPMoeExpertDispatchFP8(
|
||
const paddle::Tensor &input, const paddle::Tensor &scale,
|
||
const paddle::Tensor &topk_ids, const paddle::Tensor &topk_weights,
|
||
const paddle::Tensor &token_nums_per_expert,
|
||
const paddle::Tensor &token_nums_per_expert_padded,
|
||
const bool use_in_ep, const int token_nums_this_rank_padded);
|
||
|
||
std::vector<paddle::Tensor> PerTokenQuant(paddle::Tensor &input,
|
||
const int block_size);
|
||
std::vector<paddle::Tensor> PerTokenQuantPadding(paddle::Tensor &input,
|
||
const int block_size);
|
||
std::vector<paddle::Tensor>
|
||
MaskedPerTokenQuant(paddle::Tensor &input, paddle::Tensor &recv_expert_count,
|
||
const int block_size);
|
||
|
||
std::vector<paddle::Tensor> EPMoeExpertCombine(
|
||
const paddle::Tensor &ffn_out, const paddle::Tensor &expert_scales_float,
|
||
const paddle::Tensor &permute_indices_per_token,
|
||
const paddle::Tensor &top_k_indices,
|
||
const paddle::optional<paddle::Tensor> &down_proj_bias,
|
||
const bool norm_topk_prob, const float routed_scaling_factor);
|
||
|
||
std::vector<std::vector<int>> GetExpertTokenNum(const paddle::Tensor &topk_ids,
|
||
const int num_experts);
|
||
|
||
paddle::Tensor MoeExpertFFNFunc(
|
||
const paddle::Tensor& permute_input,
|
||
const paddle::Tensor& tokens_expert_prefix_sum,
|
||
const paddle::Tensor& up_gate_proj_weight, const paddle::Tensor& down_proj_weight,
|
||
const paddle::optional<paddle::Tensor>& up_gate_proj_bias,
|
||
const paddle::optional<paddle::Tensor>& up_gate_proj_scale,
|
||
const paddle::optional<paddle::Tensor>& down_proj_scale,
|
||
const paddle::optional<paddle::Tensor>& down_proj_in_scale,
|
||
const paddle::optional<paddle::Tensor>& expert_idx_per_token,
|
||
const std::string& quant_method, const bool used_in_ep_low_latency,
|
||
const int estimate_total_token_nums);
|
||
|
||
paddle::Tensor MoeExpertFFNWint2Func(
|
||
const paddle::Tensor& permute_input,
|
||
const paddle::Tensor& tokens_expert_prefix_sum,
|
||
const paddle::Tensor& up_gate_proj_weight,
|
||
const paddle::Tensor& down_proj_weight,
|
||
const paddle::optional<paddle::Tensor>& up_gate_proj_bias,
|
||
const paddle::optional<paddle::Tensor>& up_gate_proj_scale,
|
||
const paddle::optional<paddle::Tensor>& down_proj_scale,
|
||
const paddle::optional<paddle::Tensor>& up_gate_proj_local_scale,
|
||
const paddle::optional<paddle::Tensor>& up_gate_proj_code_scale,
|
||
const paddle::optional<paddle::Tensor>& up_gate_proj_code_zp,
|
||
const paddle::optional<paddle::Tensor>& down_proj_local_scale,
|
||
const paddle::optional<paddle::Tensor>& down_proj_code_scale,
|
||
const paddle::optional<paddle::Tensor>& down_proj_code_zp,
|
||
const bool used_in_ep_low_latency);
|
||
|
||
paddle::Tensor MoeExpertReduceFunc(
|
||
const paddle::Tensor &ffn_out, const paddle::Tensor &top_k_weight,
|
||
const paddle::Tensor &permute_indices_per_token,
|
||
const paddle::Tensor &top_k_indices,
|
||
const paddle::optional<paddle::Tensor> &down_proj_bias,
|
||
const bool norm_topk_prob, const float routed_scaling_factor);
|
||
|
||
void InitKVSignalPerQuery(const paddle::Tensor &seq_lens_encoder_tensor,
|
||
const paddle::Tensor &seq_lens_this_time_tensor,
|
||
const paddle::Tensor &seq_lens_decoder_tensor,
|
||
const int rank, const int num_layers);
|
||
|
||
void GetOutputKVSignal(const paddle::Tensor &x, int64_t rank_id,
|
||
bool wait_flag);
|
||
|
||
paddle::Tensor DequantInt8Func(const paddle::Tensor &input,
|
||
const paddle::Tensor &out_scale,
|
||
std::string dtype);
|
||
|
||
paddle::Tensor OpenShmAndGetMetaSignalFunc(const int rank, const int device_id,
|
||
const bool keep_pd_step_flag);
|
||
|
||
paddle::Tensor InitSignalLayerwiseFunc(const paddle::Tensor &kv_signal_metadata,
|
||
const int layer_id);
|
||
|
||
std::vector<paddle::Tensor> GetBlockShapeAndSplitKVBlock(
|
||
const paddle::Tensor &seq_lens_encoder,
|
||
const paddle::Tensor &seq_lens_decoder,
|
||
const paddle::Tensor &seq_lens_this_time,
|
||
paddle::Tensor &decoder_batch_ids, // Inplace
|
||
paddle::Tensor &decoder_tile_ids_per_batch, // Inplace
|
||
paddle::Tensor &decoder_num_blocks_x_cpu, // Inplace, Pinned Memory
|
||
paddle::Tensor &max_len_tensor_cpu, // Inplace, Pinned Memory
|
||
const int encoder_block_shape_q,
|
||
const int decoder_block_shape_q,
|
||
const int group_size,
|
||
const int block_size,
|
||
const int decoder_step_token_num);
|
||
|
||
std::vector<paddle::Tensor> GetPaddingOffset(const paddle::Tensor &input_ids,
|
||
const paddle::Tensor &cum_offsets,
|
||
const paddle::Tensor &token_num,
|
||
const paddle::Tensor &seq_len);
|
||
|
||
void SetValueByFlagsAndIdx(const paddle::Tensor &pre_ids_all,
|
||
const paddle::Tensor &input_ids,
|
||
const paddle::Tensor &seq_lens_this_time,
|
||
const paddle::Tensor &seq_lens_encoder,
|
||
const paddle::Tensor &seq_lens_decoder,
|
||
const paddle::Tensor &step_idx,
|
||
const paddle::Tensor &stop_flags);
|
||
|
||
paddle::Tensor RebuildPaddingFunc(
|
||
const paddle::Tensor &tmp_out, // [token_num, dim_embed]
|
||
const paddle::Tensor &cum_offsets, // [bsz, 1]
|
||
const paddle::Tensor &seq_len_this_time,
|
||
const paddle::Tensor &seq_lens_decoder,
|
||
const paddle::Tensor &seq_lens_encoder,
|
||
const paddle::optional<paddle::Tensor> &output_padding_offset,
|
||
int max_input_length);
|
||
|
||
void GetStopFlagsMulti(const paddle::Tensor &topk_ids,
|
||
const paddle::Tensor &stop_flags,
|
||
const paddle::Tensor &seq_lens,
|
||
const paddle::Tensor &end_ids,
|
||
const paddle::Tensor &next_tokens,
|
||
const paddle::Tensor &pre_ids,
|
||
const paddle::Tensor &step_idx,
|
||
const paddle::Tensor &stop_seqs,
|
||
const paddle::Tensor &stop_seqs_len,
|
||
const bool beam_search);
|
||
|
||
|
||
void UpdateInputes(const paddle::Tensor &stop_flags,
|
||
const paddle::Tensor ¬_need_stop, // only on cpu
|
||
const paddle::Tensor &seq_lens_this_time,
|
||
const paddle::Tensor &seq_lens_encoder,
|
||
const paddle::Tensor &seq_lens_decoder,
|
||
const paddle::Tensor &input_ids,
|
||
const paddle::Tensor &stop_nums,
|
||
const paddle::Tensor &next_tokens,
|
||
const paddle::Tensor &is_block_step);
|
||
|
||
void UpdateInputesV1(const paddle::Tensor &stop_flags,
|
||
const paddle::Tensor ¬_need_stop, // only on cpu
|
||
const paddle::Tensor &seq_lens_this_time,
|
||
const paddle::Tensor &seq_lens_encoder,
|
||
const paddle::Tensor &seq_lens_decoder,
|
||
const paddle::Tensor &step_seq_lens_decoder,
|
||
const paddle::Tensor &prompt_lens,
|
||
const paddle::Tensor &topk_ids,
|
||
const paddle::Tensor &input_ids,
|
||
const paddle::Tensor &block_tables,
|
||
const paddle::Tensor &stop_nums,
|
||
const paddle::Tensor &next_tokens,
|
||
const paddle::Tensor &is_block_step,
|
||
const int block_size);
|
||
|
||
void RecoverDecodeTask(const paddle::Tensor &stop_flags,
|
||
const paddle::Tensor &seq_lens_this_time,
|
||
const paddle::Tensor &seq_lens_encoder,
|
||
const paddle::Tensor &seq_lens_decoder,
|
||
const paddle::Tensor &step_seq_lens_decoder,
|
||
const paddle::Tensor &block_tables,
|
||
const paddle::Tensor &is_block_step,
|
||
const int block_size);
|
||
|
||
|
||
|
||
paddle::Tensor
|
||
GroupSwigluWithMasked(const paddle::Tensor &fc1_out_tensor,
|
||
const paddle::Tensor &token_nums_per_expert);
|
||
|
||
std::vector<paddle::Tensor> ExtractTextTokenOutput(
|
||
const paddle::Tensor &max_seq_len, const paddle::Tensor &max_seq_len_index,
|
||
const paddle::Tensor &mm_token_num_len,
|
||
const paddle::Tensor &seq_lens_this_time,
|
||
const paddle::Tensor &cu_seqlens_q, const paddle::Tensor &hidden_states);
|
||
|
||
std::vector<paddle::Tensor> MoEDeepGEMMPermute(const paddle::Tensor &x,
|
||
const paddle::Tensor &topk_idx,
|
||
const int num_experts,
|
||
const int max_tokens_per_expert);
|
||
|
||
std::vector<paddle::Tensor> MoEDeepGEMMDePermute(
|
||
const paddle::Tensor
|
||
&ffn_out, // [num_experts, max_tokens_per_expert, hidden]
|
||
const paddle::Tensor &permute_indices_per_token, // [token_num, topk}]
|
||
const paddle::Tensor &topk_idx, const paddle::Tensor &topk_weights);
|
||
|
||
void TextImageIndexOut(const paddle::Tensor &token_type_ids,
|
||
const paddle::Tensor &text_input,
|
||
const paddle::Tensor &image_input);
|
||
|
||
void TextImageGatherScatter(paddle::Tensor &input, paddle::Tensor &text_input,
|
||
paddle::Tensor &image_input,
|
||
paddle::Tensor &token_type_ids,
|
||
paddle::Tensor &text_index,
|
||
paddle::Tensor &image_index, const bool is_scatter);
|
||
|
||
paddle::Tensor count_tokens_per_expert_func(const paddle::Tensor &topk_ids,
|
||
int64_t num_experts);
|
||
void GetPositionIdsAndMaskEncoderBatch(
|
||
const paddle::Tensor& seq_lens_encoder,
|
||
const paddle::Tensor& seq_lens_decoder,
|
||
const paddle::Tensor& seq_lens_this_time,
|
||
const paddle::Tensor& position_ids,
|
||
const paddle::Tensor& mask_encoder_batch);
|
||
|
||
std::vector<paddle::Tensor> DecodeMLAWriteCacheKernel(
|
||
const paddle::Tensor& kv_nope,
|
||
const paddle::Tensor& kv_pe,
|
||
const paddle::Tensor& kv_cache,
|
||
const paddle::Tensor& seq_lens,
|
||
const paddle::Tensor& seq_lens_encoder,
|
||
const paddle::Tensor& batch_id_per_token,
|
||
const paddle::Tensor& cu_seqlens_q,
|
||
const paddle::Tensor& block_tables,
|
||
const std::string& cache_quant_type_str,
|
||
const int max_seq_len,
|
||
const bool speculate_decoder);
|
||
|
||
std::vector<paddle::Tensor> PrefillMLAWriteCacheKernel(
|
||
const paddle::Tensor& kv_nope,
|
||
const paddle::Tensor& kv_pe,
|
||
const paddle::Tensor& kv_cache,
|
||
const paddle::Tensor& seq_lens,
|
||
const paddle::Tensor& seq_lens_decoder,
|
||
const paddle::Tensor& batch_id_per_token,
|
||
const paddle::Tensor& cu_seqlens_q,
|
||
const paddle::Tensor& block_tables,
|
||
const std::string& cache_quant_type_str,
|
||
const int max_seq_len);
|
||
|
||
|
||
void FusedRotaryPositionEncoding(
|
||
paddle::Tensor& query, // [num_tokens, num_heads, head_size] or
|
||
// [num_tokens, num_heads * head_size]
|
||
paddle::Tensor& key,
|
||
// [num_tokens, num_kv_heads, head_size] or [num_tokens, num_kv_heads *
|
||
// head_size]
|
||
const paddle::Tensor& position_ids, // [num_tokens]
|
||
const paddle::Tensor& cos_sin_cache, // [max_position, rot_dim]
|
||
int head_size,
|
||
bool is_neox);
|
||
|
||
std::vector<paddle::Tensor> MultiHeadLatentAttention(
|
||
const paddle::Tensor& query,
|
||
const paddle::Tensor& key_cache,
|
||
const paddle::Tensor& value_cache,
|
||
const paddle::Tensor& seq_lens_encoder,
|
||
const paddle::Tensor& seq_lens_decoder,
|
||
const paddle::Tensor& seq_lens_this_time,
|
||
const paddle::Tensor& cu_seqlens_q,
|
||
const paddle::Tensor& batch_id_per_token,
|
||
const paddle::Tensor& block_tables,
|
||
const paddle::Tensor& encoder_batch_ids,
|
||
const paddle::Tensor& encoder_tile_ids_per_batch,
|
||
const paddle::Tensor& encoder_num_blocks,
|
||
const paddle::Tensor& kv_batch_ids,
|
||
const paddle::Tensor& kv_tile_ids_per_batch,
|
||
const paddle::Tensor& kv_num_blocks,
|
||
const paddle::Tensor& decoder_batch_ids,
|
||
const paddle::Tensor& decoder_tile_ids_per_batch,
|
||
const paddle::Tensor& decoder_num_blocks,
|
||
const paddle::Tensor& decoder_num_blocks_cpu,
|
||
const paddle::Tensor& max_enc_len_this_time,
|
||
const paddle::Tensor& max_dec_len_this_time,
|
||
const paddle::Tensor& max_len_kv,
|
||
const paddle::optional<paddle::Tensor>& attn_mask,
|
||
const paddle::optional<paddle::Tensor>& query_bias,
|
||
const paddle::optional<paddle::Tensor>& query_out_scales,
|
||
const paddle::optional<paddle::Tensor>& cache_k_quant_scales,
|
||
const paddle::optional<paddle::Tensor>& cache_v_quant_scales,
|
||
const paddle::optional<paddle::Tensor>& cache_k_dequant_scales,
|
||
const paddle::optional<paddle::Tensor>& cache_v_dequant_scales,
|
||
const paddle::optional<paddle::Tensor>& cache_k_zp,
|
||
const paddle::optional<paddle::Tensor>& cache_v_zp,
|
||
const paddle::optional<paddle::Tensor>& out_linear_shifts,
|
||
const paddle::optional<paddle::Tensor>& out_linear_smooths,
|
||
const std::string& compute_dtype,
|
||
const std::string& cache_quant_type_str,
|
||
const int nope_size,
|
||
const int max_input_length,
|
||
const float softmax_scale,
|
||
const float quant_max_bound,
|
||
const float quant_min_bound,
|
||
const float out_linear_in_scale,
|
||
const int speculate_max_draft_token_num,
|
||
const bool causal,
|
||
const bool speculate_decoder);
|
||
|
||
|
||
std::vector<paddle::Tensor> tritonmoe_preprocess_kernel(const paddle::Tensor& topk_ids, int64_t num_experts, int64_t GEMM_BLOCK_SIZE_M);
|
||
|
||
|
||
std::vector<paddle::Tensor> MoeWna16MarlinGemmApi(
|
||
const paddle::Tensor& a,
|
||
const paddle::optional<paddle::Tensor>& c_or_none,
|
||
const paddle::Tensor& b_q_weight,
|
||
const paddle::Tensor& b_scales,
|
||
const paddle::optional<paddle::Tensor>& global_scale_or_none,
|
||
const paddle::optional<paddle::Tensor>& b_zeros_or_none,
|
||
const paddle::optional<paddle::Tensor>& g_idx_or_none,
|
||
const paddle::optional<paddle::Tensor>& perm_or_none,
|
||
const paddle::Tensor& workspace,
|
||
const paddle::Tensor& sorted_token_ids,
|
||
const paddle::Tensor& expert_ids,
|
||
const paddle::Tensor& num_tokens_post_padded,
|
||
const paddle::Tensor& topk_weights,
|
||
int64_t moe_block_size,
|
||
int64_t top_k,
|
||
bool mul_topk_weights,
|
||
bool is_ep,
|
||
const std::string& b_q_type_str,
|
||
int64_t size_m,
|
||
int64_t size_n,
|
||
int64_t size_k,
|
||
bool is_k_full,
|
||
bool use_atomic_add,
|
||
bool use_fp32_reduce,
|
||
bool is_zp_float);
|
||
void CutlassScaledMm(paddle::Tensor &c, paddle::Tensor const &a,
|
||
paddle::Tensor const &b, paddle::Tensor const &a_scales,
|
||
paddle::Tensor const &b_scales,
|
||
paddle::optional<paddle::Tensor> const &bias);
|
||
|
||
void CutlassScaledMmAzp(paddle::Tensor& c, paddle::Tensor const& a,
|
||
paddle::Tensor const& b,
|
||
paddle::Tensor const& a_scales,
|
||
paddle::Tensor const& b_scales,
|
||
paddle::Tensor const& azp_adj,
|
||
paddle::optional<paddle::Tensor> const& azp,
|
||
paddle::optional<paddle::Tensor> const& bias);
|
||
|
||
void StaticScaledFp8Quant(paddle::Tensor &out, paddle::Tensor const &input,
|
||
paddle::Tensor const &scale);
|
||
|
||
void DynamicScaledFp8Quant(paddle::Tensor &out, paddle::Tensor const &input,
|
||
paddle::Tensor &scale);
|
||
|
||
void DynamicPerTokenScaledFp8Quant(paddle::Tensor &out,
|
||
paddle::Tensor const &input,
|
||
paddle::Tensor &scales, float scale_ub);
|
||
|
||
std::vector<paddle::Tensor> NoauxTc(
|
||
paddle::Tensor& scores,
|
||
paddle::Tensor& scores_with_bias,
|
||
int n_group,
|
||
int topk_group,
|
||
int topk,
|
||
float routed_scaling_factor);
|
||
|
||
#ifdef ENABLE_FP8
|
||
paddle::Tensor cutlass_fp8_fp8_half_gemm_func(
|
||
const paddle::Tensor& x,
|
||
const paddle::Tensor& y,
|
||
const paddle::optional<paddle::Tensor>& bias,
|
||
bool trans_x,
|
||
bool trans_y,
|
||
float scale, // only support per-tensor quantization
|
||
std::string output_dtype,
|
||
std::string activation_type);
|
||
|
||
paddle::Tensor MoeFusedHadamardQuantFp8Func(
|
||
const paddle::Tensor &input,
|
||
const paddle::Tensor &scale,
|
||
const paddle::Tensor &topk_ids,
|
||
const int top_k,
|
||
const int intermediate_size,
|
||
const bool tiled);
|
||
|
||
paddle::Tensor FusedHadamardQuantFp8Func(
|
||
const paddle::Tensor &input,
|
||
const float scale);
|
||
#endif
|
||
|
||
int64_t init_custom_all_reduce(const std::vector<int64_t>& fake_ipc_ptrs,
|
||
paddle::Tensor& rank_data, int64_t rank, bool full_nvlink);
|
||
|
||
void all_reduce(paddle::Tensor& inp, paddle::Tensor& out, int64_t _fa,
|
||
int64_t reg_buffer, int64_t reg_buffer_sz_bytes);
|
||
|
||
void dispose(int64_t _fa);
|
||
|
||
int64_t meta_size();
|
||
|
||
void register_buffer(int64_t _fa, const std::vector<int64_t>& fake_ipc_ptrs);
|
||
|
||
std::tuple<std::vector<int64_t>, std::vector<int64_t>> get_graph_buffer_ipc_meta(int64_t _fa);
|
||
|
||
void register_graph_buffers(int64_t _fa,
|
||
const std::vector<std::vector<int64_t>>& handles,
|
||
const std::vector<std::vector<int64_t>>& offsets);
|
||
|
||
std::tuple<int64_t, paddle::Tensor> allocate_shared_buffer_and_handle(
|
||
int64_t size);
|
||
|
||
int64_t open_mem_handle(paddle::Tensor& mem_handle);
|
||
|
||
void free_shared_buffer(int64_t buffer);
|
||
|
||
// speculative decoding Kernel
|
||
std::vector<paddle::Tensor> SpeculateGetPaddingOffset(
|
||
const paddle::Tensor& input_ids,
|
||
const paddle::Tensor& draft_tokens,
|
||
const paddle::Tensor& cum_offsets,
|
||
const paddle::Tensor& token_num,
|
||
const paddle::Tensor& seq_len,
|
||
const paddle::Tensor& seq_lens_encoder);
|
||
|
||
std::vector<paddle::Tensor> SpeculateGetSeqLensOutput(
|
||
const paddle::Tensor& seq_lens_this_time,
|
||
const paddle::Tensor& seq_lens_encoder,
|
||
const paddle::Tensor& seq_lens_decoder);
|
||
|
||
std::vector<paddle::Tensor> SpeculateGetOutputPaddingOffset(
|
||
const paddle::Tensor& output_cum_offsets_tmp,
|
||
const paddle::Tensor& out_token_num,
|
||
const paddle::Tensor& seq_lens_output,
|
||
const int max_seq_len);
|
||
|
||
|
||
void SpecTokenPenaltyMultiScores(const paddle::Tensor &pre_ids,
|
||
const paddle::Tensor &logits,
|
||
const paddle::Tensor &penalty_scores,
|
||
const paddle::Tensor &frequency_scores,
|
||
const paddle::Tensor &presence_scores,
|
||
const paddle::Tensor &temperatures,
|
||
const paddle::Tensor &bad_tokens,
|
||
const paddle::Tensor &cur_len,
|
||
const paddle::Tensor &min_len,
|
||
const paddle::Tensor &eos_token_id,
|
||
const paddle::Tensor &seq_lens_this_time,
|
||
const paddle::Tensor &output_padding_offset,
|
||
const paddle::Tensor &output_cum_offsets,
|
||
const int max_seq_len);
|
||
|
||
void SpecGetStopFlagsMultiSeqs(const paddle::Tensor &accept_tokens,
|
||
const paddle::Tensor &accept_num,
|
||
const paddle::Tensor &pre_ids,
|
||
const paddle::Tensor &step_idx,
|
||
const paddle::Tensor &stop_flags,
|
||
const paddle::Tensor &seq_lens,
|
||
const paddle::Tensor &stop_seqs,
|
||
const paddle::Tensor &stop_seqs_len,
|
||
const paddle::Tensor &end_ids);
|
||
|
||
|
||
void SpeculateVerify(
|
||
const paddle::Tensor &accept_tokens, const paddle::Tensor &accept_num,
|
||
const paddle::Tensor &step_idx, const paddle::Tensor &stop_flags,
|
||
const paddle::Tensor &seq_lens_encoder,
|
||
const paddle::Tensor &seq_lens_decoder, const paddle::Tensor &draft_tokens,
|
||
const paddle::Tensor &seq_lens_this_time,
|
||
const paddle::Tensor &verify_tokens, const paddle::Tensor &verify_scores,
|
||
const paddle::Tensor &max_dec_len, const paddle::Tensor &end_tokens,
|
||
const paddle::Tensor &is_block_step,
|
||
const paddle::Tensor &output_cum_offsets,
|
||
const paddle::Tensor &actual_candidate_len,
|
||
const paddle::Tensor &actual_draft_token_nums, const paddle::Tensor &topp,
|
||
int max_seq_len, int verify_window, bool enable_topp, bool benchmark_mode);
|
||
|
||
void SpeculateUpdate(const paddle::Tensor &seq_lens_encoder,
|
||
const paddle::Tensor &seq_lens_decoder,
|
||
const paddle::Tensor ¬_need_stop,
|
||
const paddle::Tensor &draft_tokens,
|
||
const paddle::Tensor &actual_draft_token_nums,
|
||
const paddle::Tensor &accept_tokens,
|
||
const paddle::Tensor &accept_num,
|
||
const paddle::Tensor &stop_flags,
|
||
const paddle::Tensor &seq_lens_this_time,
|
||
const paddle::Tensor &is_block_step,
|
||
const paddle::Tensor &stop_nums);
|
||
|
||
void SpeculateSetValueByFlagsAndIdx(const paddle::Tensor &pre_ids_all,
|
||
const paddle::Tensor &accept_tokens,
|
||
const paddle::Tensor &accept_num,
|
||
const paddle::Tensor &stop_flags,
|
||
const paddle::Tensor &seq_lens_this_time,
|
||
const paddle::Tensor &seq_lens_encoder,
|
||
const paddle::Tensor &seq_lens_decoder,
|
||
const paddle::Tensor &step_idx);
|
||
|
||
void SpeculateSaveWithOutputMsgStatic(const paddle::Tensor& accept_tokens,
|
||
const paddle::Tensor& accept_num,
|
||
const paddle::Tensor& not_need_stop,
|
||
int64_t rank_id,
|
||
bool save_each_rank);
|
||
|
||
|
||
void SpeculateClearAcceptNums(const paddle::Tensor& accept_num,
|
||
const paddle::Tensor& seq_lens_decoder);
|
||
|
||
void NgramMatch(const paddle::Tensor &input_ids,
|
||
const paddle::Tensor &input_ids_len,
|
||
const paddle::Tensor &pre_ids,
|
||
const paddle::Tensor &step_idx,
|
||
const paddle::Tensor &draft_token_num,
|
||
const paddle::Tensor &draft_tokens,
|
||
const paddle::Tensor &seq_lens_this_time,
|
||
const paddle::Tensor &seq_lens_encoder,
|
||
const paddle::Tensor &seq_lens_decoder,
|
||
const paddle::Tensor &max_dec_len,
|
||
const int max_ngram_size,
|
||
const int max_draft_tokens);
|
||
|
||
|
||
void HybridMtpNgram(const paddle::Tensor &input_ids,
|
||
const paddle::Tensor &input_ids_len,
|
||
const paddle::Tensor &pre_ids,
|
||
const paddle::Tensor &step_idx,
|
||
const paddle::Tensor &draft_token_num,
|
||
const paddle::Tensor &draft_tokens,
|
||
const paddle::Tensor &seq_lens_this_time,
|
||
const paddle::Tensor &seq_lens_decoder,
|
||
const paddle::Tensor &max_dec_len,
|
||
const int max_ngram_size,
|
||
const int min_ngram_size,
|
||
const int max_draft_tokens);
|
||
|
||
|
||
// MTP
|
||
void DraftModelPostprocess(const paddle::Tensor& base_model_draft_tokens,
|
||
const paddle::Tensor& base_model_seq_lens_this_time,
|
||
const paddle::Tensor& base_model_seq_lens_encoder,
|
||
const paddle::Tensor& base_model_stop_flags);
|
||
|
||
|
||
void DraftModelPreprocess(const paddle::Tensor& draft_tokens,
|
||
const paddle::Tensor& input_ids,
|
||
const paddle::Tensor& stop_flags,
|
||
const paddle::Tensor& seq_lens_this_time,
|
||
const paddle::Tensor& seq_lens_encoder,
|
||
const paddle::Tensor& seq_lens_decoder,
|
||
const paddle::Tensor& step_idx,
|
||
const paddle::Tensor& not_need_stop,
|
||
const paddle::Tensor& batch_drop,
|
||
const paddle::Tensor& pre_ids,
|
||
const paddle::Tensor& accept_tokens,
|
||
const paddle::Tensor& accept_num,
|
||
const paddle::Tensor& base_model_seq_lens_this_time,
|
||
const paddle::Tensor& base_model_seq_lens_encoder,
|
||
const paddle::Tensor& base_model_seq_lens_decoder,
|
||
const paddle::Tensor& base_model_step_idx,
|
||
const paddle::Tensor& base_model_stop_flags,
|
||
const paddle::Tensor& base_model_is_block_step,
|
||
const paddle::Tensor& base_model_draft_tokens,
|
||
const int max_draft_token,
|
||
const bool truncate_first_token,
|
||
const bool splitwise_prefill);
|
||
|
||
|
||
void DraftModelUpdate(const paddle::Tensor& inter_next_tokens,
|
||
const paddle::Tensor& draft_tokens,
|
||
const paddle::Tensor& pre_ids,
|
||
const paddle::Tensor& seq_lens_this_time,
|
||
const paddle::Tensor& seq_lens_encoder,
|
||
const paddle::Tensor& seq_lens_decoder,
|
||
const paddle::Tensor& step_idx,
|
||
const paddle::Tensor& output_cum_offsets,
|
||
const paddle::Tensor& stop_flags,
|
||
const paddle::Tensor& not_need_stop,
|
||
const paddle::Tensor& max_dec_len,
|
||
const paddle::Tensor& end_ids,
|
||
const paddle::Tensor& base_model_draft_tokens,
|
||
const int max_seq_len,
|
||
const int substep);
|
||
|
||
|
||
|
||
std::vector<paddle::Tensor> EagleGetHiddenStates(
|
||
const paddle::Tensor& input,
|
||
const paddle::Tensor& seq_lens_this_time,
|
||
const paddle::Tensor& seq_lens_encoder,
|
||
const paddle::Tensor& seq_lens_decoder,
|
||
const paddle::Tensor& stop_flags,
|
||
const paddle::Tensor& accept_nums,
|
||
const paddle::Tensor& base_model_seq_lens_this_time,
|
||
const paddle::Tensor& base_model_seq_lens_encoder,
|
||
const int actual_draft_token_num);
|
||
|
||
std::vector<paddle::Tensor> EagleGetSelfHiddenStates(
|
||
const paddle::Tensor& input,
|
||
const paddle::Tensor& last_seq_lens_this_time,
|
||
const paddle::Tensor& seq_lens_this_time,
|
||
const paddle::Tensor& step_idx);
|
||
|
||
void MTPStepPaddle(
|
||
const paddle::Tensor &base_model_stop_flags,
|
||
const paddle::Tensor &stop_flags,
|
||
const paddle::Tensor &batch_drop,
|
||
const paddle::Tensor &seq_lens_this_time,
|
||
const paddle::Tensor &seq_lens_encoder,
|
||
const paddle::Tensor &seq_lens_decoder,
|
||
const paddle::Tensor &block_tables, // [bsz, block_num_per_seq]
|
||
const paddle::Tensor &encoder_block_lens,
|
||
const paddle::Tensor &used_list_len,
|
||
const paddle::Tensor &free_list,
|
||
const paddle::Tensor &free_list_len,
|
||
const int block_size,
|
||
const int max_draft_tokens);
|
||
|
||
void SpeculateStepPaddle(
|
||
const paddle::Tensor &stop_flags,
|
||
const paddle::Tensor &seq_lens_this_time,
|
||
const paddle::Tensor &ori_seq_lens_encoder,
|
||
const paddle::Tensor &seq_lens_encoder,
|
||
const paddle::Tensor &seq_lens_decoder,
|
||
const paddle::Tensor &block_tables, // [bsz, block_num_per_seq]
|
||
const paddle::Tensor &encoder_block_lens,
|
||
const paddle::Tensor &is_block_step,
|
||
const paddle::Tensor &step_block_list,
|
||
const paddle::Tensor &step_lens,
|
||
const paddle::Tensor &recover_block_list,
|
||
const paddle::Tensor &recover_lens,
|
||
const paddle::Tensor &need_block_list,
|
||
const paddle::Tensor &need_block_len,
|
||
const paddle::Tensor &used_list_len,
|
||
const paddle::Tensor &free_list,
|
||
const paddle::Tensor &free_list_len,
|
||
const paddle::Tensor &input_ids,
|
||
const paddle::Tensor &pre_ids,
|
||
const paddle::Tensor &step_idx,
|
||
const paddle::Tensor &next_tokens,
|
||
const paddle::Tensor &first_token_ids,
|
||
const paddle::Tensor &accept_num,
|
||
const int block_size,
|
||
const int encoder_decoder_block_num,
|
||
const int max_draft_tokens);
|
||
|
||
void MergePrefillDecodeOutput(
|
||
const paddle::Tensor &encoder_res,
|
||
const paddle::Tensor &decoder_res,
|
||
const paddle::Tensor &seq_lens_encoder,
|
||
const paddle::Tensor &seq_lens_decoder,
|
||
const paddle::Tensor &seq_lens_this_time,
|
||
const paddle::Tensor &cu_seq_q,
|
||
const int head_num,
|
||
const int head_dim,
|
||
const int max_token);
|
||
|
||
std::vector<paddle::Tensor> TopPSamplingReject(const paddle::Tensor &probs,
|
||
const paddle::Tensor &top_p,
|
||
const paddle::optional<paddle::Tensor> &top_k,
|
||
int64_t seed);
|
||
|
||
std::vector<paddle::Tensor> TopKRenorm(const paddle::Tensor &probs,
|
||
const paddle::Tensor &top_k);
|
||
|
||
std::vector<paddle::Tensor> MinPSamplingFromProbs(const paddle::Tensor &probs,
|
||
const paddle::Tensor &min_p);
|
||
|
||
void SaveOutMmsgStatic(const paddle::Tensor& x,
|
||
const paddle::Tensor& not_need_stop,
|
||
int64_t rank_id,
|
||
bool save_each_rank);
|
||
|
||
PYBIND11_MODULE(fastdeploy_ops, m) {
|
||
|
||
m.def("get_expert_token_num", &GetExpertTokenNum, py::arg("topk_ids"),
|
||
py::arg("num_experts"), "get expert token num");
|
||
|
||
/**
|
||
* moe/fused_moe/moe_redundant_topk_select.cu
|
||
* moe_redundant_topk_select
|
||
*/
|
||
m.def("moe_redundant_topk_select", &MoERedundantTopKSelectKernel,
|
||
py::arg("gating_logits"), py::arg("expert_id_to_ep_rank_array"),
|
||
py::arg("expert_in_rank_num_list"),
|
||
py::arg("tokens_per_expert_stats_list"), py::arg("bias"),
|
||
py::arg("moe_topk"), py::arg("apply_norm_weight"),
|
||
py::arg("enable_softmax_top_k_fused"),
|
||
py::arg("redundant_ep_rank_num_plus_one"),
|
||
"moe export RedundantTopKSelect function");
|
||
|
||
/**
|
||
* open_shm_and_get_meta_signal.cc
|
||
* InitKVSignalPerQuery
|
||
*/
|
||
m.def("init_kv_signal_per_query", &InitKVSignalPerQuery,
|
||
py::arg("seq_lens_encoder_tensor"),
|
||
py::arg("seq_lens_this_time_tensor"),
|
||
py::arg("seq_lens_decoder_tensor"), py::arg("rank"),
|
||
py::arg("num_layers"), "init_kv_signal_per_query function");
|
||
|
||
/**
|
||
* GetOutputKVSignal
|
||
*/
|
||
m.def("get_output_kv_signal", &GetOutputKVSignal, py::arg("x"),
|
||
py::arg("rank_id"), py::arg("wait_flag"),
|
||
"get_output_kv_signal function");
|
||
|
||
m.def("moe_deepgemm_permute", &MoEDeepGEMMPermute, "MoEDeepGEMMPermute");
|
||
m.def("moe_deepgemm_depermute", &MoEDeepGEMMDePermute,
|
||
"MoEDeepGEMMDePermute");
|
||
/**
|
||
* alloc_cache_pinned.cc
|
||
* cuda_host_alloc
|
||
* cuda_host_free
|
||
*/
|
||
m.def("cuda_host_alloc", &cuda_host_alloc, "Allocate pinned memory",
|
||
py::arg("size"), py::arg("flags") = cudaHostAllocDefault);
|
||
m.def("cuda_host_free", &cuda_host_free, "Free pinned memory",
|
||
py::arg("ptr"));
|
||
py::register_exception<CudaError>(m, "CudaError");
|
||
/**
|
||
* append_attention.cu
|
||
* append_attention
|
||
*/
|
||
m.def("append_attention", &AppendAttention, "append attention function");
|
||
/**
|
||
* gqa_rope_write_cache.cu
|
||
* gqa_rope_write_cache
|
||
*/
|
||
m.def("gqa_rope_write_cache", &GQARopeWriteCacheKernel,
|
||
"gqa rope write cache function");
|
||
/**
|
||
* pre_cache_len_concat.cu
|
||
* pre_cache_len_concat
|
||
*/
|
||
m.def("pre_cache_len_concat", &PreCacheLenConcat,
|
||
"pre_cache len concat function");
|
||
/**
|
||
* moe/fused_moe/fused_moe.cu
|
||
* fused_moe
|
||
*/
|
||
m.def("fused_moe", &FusedExpertMoeFunc, "fused moe function");
|
||
|
||
/**
|
||
* moe/fused_moe/fused_moe.cu
|
||
* fused_expert_moe
|
||
*/
|
||
m.def("fused_expert_moe", &FusedExpertMoeFunc, "fused moe function");
|
||
|
||
/**
|
||
* moe/fused_moe/moe_dispatch.cu
|
||
* moe_expert_dispatch
|
||
*/
|
||
m.def("moe_expert_dispatch", &MoeExpertDispatch, py::arg("input"),
|
||
py::arg("gating_output"), py::arg("gating_correction_bias"),
|
||
py::arg("w4a8_in_scale"), py::arg("moe_topk"), py::arg("group_moe"),
|
||
py::arg("topk_only_mode"), "moe export dispatch function");
|
||
|
||
/**
|
||
* moe/fused_moe/ep_moe_prefill_func.cu
|
||
* ep_moe_dispatch
|
||
*/
|
||
m.def("ep_moe_expert_dispatch", &EPMoeExpertDispatch, py::arg("input"),
|
||
py::arg("topk_ids"), py::arg("topk_weights"), py::arg("up_gate_proj_in_scale"),
|
||
py::arg("token_nums_per_expert"), py::arg("token_nums_this_rank"),
|
||
py::arg("moe_quant_type"), "ep moe export dispatch function");
|
||
|
||
m.def("ep_moe_expert_dispatch_fp8", &EPMoeExpertDispatchFP8);
|
||
|
||
m.def("ep_moe_expert_combine", &EPMoeExpertCombine, py::arg("ffn_out"),
|
||
py::arg("expert_scales_float"), py::arg("permute_indices_per_token"),
|
||
py::arg("top_k_indices"), py::arg("down_proj_bias"),
|
||
py::arg("norm_topk_prob"), py::arg("routed_scaling_factor"),
|
||
"ep moe export combine function");
|
||
|
||
m.def("per_token_quant", &PerTokenQuant, py::arg("input"),
|
||
py::arg("block_size"), "per token per block quant");
|
||
|
||
m.def("per_token_quant_padding", &PerTokenQuantPadding, py::arg("input"),
|
||
py::arg("block_size"),
|
||
"per token per block quant and padding tranpose scale");
|
||
|
||
m.def("masked_per_token_quant", &MaskedPerTokenQuant, py::arg("input"),
|
||
py::arg("recv_expert_count"), py::arg("block_size"),
|
||
"per token per block quant");
|
||
|
||
/*machete/machete_mm.cu
|
||
* machete_mm
|
||
*/
|
||
m.def("machete_mm", &MacheteMMKernel, py::arg("A"), py::arg("B"), py::arg("maybe_group_scale"),
|
||
py::arg("maybe_group_zeros"), py::arg("maybe_channel_scales"), py::arg("maybe_token_scales"),
|
||
py::arg("b_type_str"), py::arg("maybe_out_type_str"), py::arg("maybe_group_size"),
|
||
py::arg("maybe_schedule"),
|
||
"machete mm function");
|
||
|
||
/*machete/machete_prepack_B.cu
|
||
* machete_prepack_B
|
||
*/
|
||
m.def("machete_prepack_B", &MachetePrepackBKernel, "machete prepacked B function");
|
||
|
||
/*machete/machete_supported_schedules.cu
|
||
* machete_supported_schedules
|
||
*/
|
||
m.def("machete_supported_schedules", &MacheteSupportedSchedules, "machete supported schedules function");
|
||
|
||
/**
|
||
* moe/fused_moe/moe_topk_select.cu
|
||
* moe_topk_select
|
||
*/
|
||
m.def("moe_topk_select", &MoETopKSelectKernel, py::arg("gating_logits"),
|
||
py::arg("bias"), py::arg("moe_topk"), py::arg("apply_norm_weight"),
|
||
py::arg("enable_softmax_top_k_fused"),
|
||
"moe export TopKSelect function");
|
||
|
||
/**
|
||
* moe/fused_moe/moe_ffn.cu
|
||
* moe_expert_ffn
|
||
*/
|
||
m.def("moe_expert_ffn", &MoeExpertFFNFunc, "moe export ffn function");
|
||
|
||
/**
|
||
* moe/fused_moe/moe_ffn_wint2.cu
|
||
* moe_expert_ffn_wint2
|
||
*/
|
||
m.def("moe_expert_ffn_wint2", &MoeExpertFFNWint2Func, "moe export ffn wint2 function");
|
||
|
||
/**
|
||
* moe/fused_moe/moe_expert_reduce.cu
|
||
* moe_expert_reduce
|
||
*/
|
||
m.def("moe_expert_reduce", &MoeExpertReduceFunc, py::arg("ffn_out"),
|
||
py::arg("top_k_weight"), py::arg("permute_indices_per_token"),
|
||
py::arg("top_k_indices"), py::arg("down_proj_bias"),
|
||
py::arg("norm_topk_prob"), py::arg("routed_scaling_factor"),
|
||
"moe export reduce function");
|
||
|
||
/**
|
||
* dequant_int8.cu
|
||
* dequant_int8
|
||
*/
|
||
m.def("dequant_int8", &DequantInt8Func, "dequant int8 function");
|
||
|
||
/**
|
||
* init_signal_layerwise.cc
|
||
* init_signal_layerwise
|
||
*/
|
||
m.def("init_signal_layerwise", &InitSignalLayerwiseFunc,
|
||
"init_signal_layerwise function");
|
||
|
||
/**
|
||
* open_shm_and_get_meta_signal.cc
|
||
* open_shm_and_get_meta_signal
|
||
*/
|
||
m.def("open_shm_and_get_meta_signal", &OpenShmAndGetMetaSignalFunc,
|
||
"open_shm_and_get_meta_signal function");
|
||
|
||
/**
|
||
* append_attn/get_block_shape_and_split_kv_block.cu
|
||
* get_block_shape_and_split_kv_block
|
||
*/
|
||
m.def("get_block_shape_and_split_kv_block",
|
||
&GetBlockShapeAndSplitKVBlock, "get_block_shape_and_split_kv_block function");
|
||
|
||
/**
|
||
* get_padding_offset.cu
|
||
* get_padding_offset
|
||
*/
|
||
m.def("get_padding_offset", &GetPaddingOffset, "get_padding_offset function");
|
||
|
||
/**
|
||
* get_padding_offset.cu
|
||
* get_padding_offset
|
||
*/
|
||
m.def("set_value_by_flags_and_idx", &SetValueByFlagsAndIdx,
|
||
"SetValueByFlagsAndIdx");
|
||
|
||
/**
|
||
* get_padding_offset.cu
|
||
* get_padding_offset
|
||
*/
|
||
m.def("rebuild_padding", &RebuildPaddingFunc, "update_inputs function");
|
||
|
||
/**
|
||
* stop_generation_multi_ends.cu
|
||
* set_stop_value_multi_ends
|
||
*/
|
||
m.def("set_stop_value_multi_ends", &GetStopFlagsMulti,
|
||
"update_inputs function");
|
||
|
||
|
||
/**
|
||
* update_inputs.cu
|
||
* update_inputs
|
||
*/
|
||
m.def("update_inputs", &UpdateInputes, "update_inputs function");
|
||
|
||
/**
|
||
* update_inputs_v1.cu
|
||
* update_inputs_v1
|
||
*/
|
||
m.def("update_inputs_v1", &UpdateInputesV1, "update inputs for scheduler v1 function");
|
||
|
||
/**
|
||
* recover_decode_task.cu
|
||
* recover_decode_task
|
||
*/
|
||
m.def("recover_decode_task", &RecoverDecodeTask, "recover decode task for scheduler v1 function");
|
||
|
||
/**
|
||
* extract_text_token_output.cu
|
||
* extract_text_token_output
|
||
*/
|
||
m.def("extract_text_token_output", &ExtractTextTokenOutput,
|
||
"extract_text_token_output function");
|
||
|
||
m.def("group_swiglu_with_masked", &GroupSwigluWithMasked,
|
||
"group_swiglu_with_masked function");
|
||
|
||
m.def("text_image_index_out", &TextImageIndexOut,
|
||
"text_image_index_out function");
|
||
|
||
m.def("text_image_gather_scatter", &TextImageGatherScatter,
|
||
"text_image_gather_scatter function");
|
||
|
||
m.def("count_tokens_per_expert_func", &count_tokens_per_expert_func);
|
||
m.def("tritonmoe_preprocess_func", &tritonmoe_preprocess_kernel);
|
||
|
||
m.def("MoeWna16MarlinGemmApi", &MoeWna16MarlinGemmApi,
|
||
py::arg("a"), py::arg("c_or_none"), py::arg("b_q_weight"),
|
||
py::arg("b_scales"), py::arg("global_scale_or_none"), py::arg("b_zeros_or_none"),
|
||
py::arg("g_idx_or_none"), py::arg("perm_or_none"), py::arg("workspace"), py::arg("sorted_token_ids"),
|
||
py::arg("expert_ids"), py::arg("num_tokens_post_padded"), py::arg("topk_weights"), py::arg("moe_block_size"),
|
||
py::arg("top_k"), py::arg("mul_topk_weights"), py::arg("is_ep"), py::arg("b_q_type_str"),
|
||
py::arg("size_m"), py::arg("size_n"), py::arg("size_k"), py::arg("is_k_full"), py::arg("use_atomic_add"),
|
||
py::arg("use_fp32_reduce"), py::arg("is_zp_float"));
|
||
|
||
m.def("get_position_ids_and_mask_encoder_batch", &GetPositionIdsAndMaskEncoderBatch,
|
||
"get_position_ids_and_mask_encoder_batch function");
|
||
|
||
/**
|
||
* cutlass_scaled_mm.cu
|
||
* cutlass_scaled_mm
|
||
* cutlass_scaled_mm_azp
|
||
*/
|
||
m.def("cutlass_scaled_mm", &CutlassScaledMm, "cutlass_scaled_mm function");
|
||
m.def("cutlass_scaled_mm_azp", &CutlassScaledMmAzp, "cutlass_scaled_mm_azp function");
|
||
|
||
/**
|
||
* quantization/common.cu
|
||
* static_scaled_fp8_quant
|
||
* dynamic_scaled_fp8_quant
|
||
* dynamic_per_token_scaled_fp8_quant
|
||
*/
|
||
m.def("static_scaled_fp8_quant", &StaticScaledFp8Quant, "static_scaled_fp8_quant function",
|
||
py::arg("out"), py::arg("input"), py::arg("scale"));
|
||
|
||
m.def("dynamic_scaled_fp8_quant", &DynamicScaledFp8Quant,
|
||
"dynamic_scaled_fp8_quant function",
|
||
py::arg("out"), py::arg("input"), py::arg("scale"));
|
||
|
||
m.def("dynamic_per_token_scaled_fp8_quant", &DynamicPerTokenScaledFp8Quant,
|
||
"dynamic_per_token_scaled_fp8_quant function",
|
||
py::arg("out"), py::arg("input"), py::arg("scales"), py::arg("scale_ub"));
|
||
m.def("decode_mla_write_cache", &DecodeMLAWriteCacheKernel, "decode_mla_write_cache function");
|
||
|
||
m.def("prefill_mla_write_cache", &PrefillMLAWriteCacheKernel, "prefill_mla_write_cache function");
|
||
|
||
m.def("fused_rotary_position_encoding", &FusedRotaryPositionEncoding, "fused_rotary_position_encoding function");
|
||
|
||
m.def("multi_head_latent_attention", &MultiHeadLatentAttention, "multi_head_latent_attention function");
|
||
|
||
m.def("noaux_tc",&NoauxTc, "noaux_tc for Deepseekv3 MoE compute");
|
||
|
||
#ifdef ENABLE_FP8
|
||
m.def("cutlass_fp8_fp8_half_gemm_fused", &cutlass_fp8_fp8_half_gemm_func,
|
||
py::arg("x"), py::arg("y"), py::arg("bias"), py::arg("transpose_x"),
|
||
py::arg("transpose_y"), py::arg("scale"), py::arg("output_dtype"),
|
||
py::arg("activation_type"), "cutlass_fp8_fp8_half_gemm_fused function");
|
||
m.def("moe_fused_hadamard_quant_fp8", &MoeFusedHadamardQuantFp8Func,
|
||
py::arg("input"), py::arg("scale"), py::arg("topk_ids"),
|
||
py::arg("top_k"), py::arg("intermediate_size"), py::arg("tiled"), "moe_fused_hadamard_quant_fp8 function");
|
||
m.def("fused_hadamard_quant_fp8", &FusedHadamardQuantFp8Func,
|
||
py::arg("input"), py::arg("scale"), "fused_hadamard_quant_fp8 function");
|
||
#endif
|
||
|
||
m.def("init_custom_all_reduce", &init_custom_all_reduce, "init all reduce class function");
|
||
|
||
m.def("all_reduce", &all_reduce, "all reduce function");
|
||
|
||
m.def("dispose", &dispose, "del function for python");
|
||
|
||
m.def("meta_size", &meta_size, "meta_size function for Signal struct");
|
||
|
||
m.def("register_buffer", ®ister_buffer, "register ipc buffer");
|
||
|
||
m.def("register_graph_buffers", ®ister_graph_buffers, "register_graph_buffers");
|
||
|
||
m.def("allocate_shared_buffer_and_handle", &allocate_shared_buffer_and_handle, "allocate_shared_buffer_and_handle");
|
||
|
||
m.def("free_shared_buffer", &free_shared_buffer, "free_shared_buffer");
|
||
|
||
m.def("open_mem_handle", &open_mem_handle, "open_mem_handle");
|
||
|
||
m.def("get_graph_buffer_ipc_meta", &get_graph_buffer_ipc_meta, "get_graph_buffer_ipc_meta");
|
||
|
||
// speculative decoding Kernel
|
||
m.def("speculate_get_padding_offset", &SpeculateGetPaddingOffset, "speculate_get_padding_offset function");
|
||
|
||
m.def("speculate_get_seq_lens_output", &SpeculateGetSeqLensOutput, "speculate_get_seq_lens_output function");
|
||
|
||
m.def("speculate_get_output_padding_offset",&SpeculateGetOutputPaddingOffset, "speculate_get_output_padding_offset function");
|
||
|
||
m.def("speculate_get_token_penalty_multi_scores",&SpecTokenPenaltyMultiScores, "speculate_get_token_penalty_multi_scores function");
|
||
|
||
m.def("speculate_set_stop_value_multi_seqs",&SpecGetStopFlagsMultiSeqs, "speculate_set_stop_value_multi_seqs function");
|
||
|
||
m.def("speculate_verify",&SpeculateVerify, "speculate_verify function");
|
||
|
||
m.def("speculate_update",&SpeculateUpdate, "Speculate Update Kernel");
|
||
|
||
m.def("speculate_set_value_by_flags_and_idx",&SpeculateSetValueByFlagsAndIdx, "speculate_set_value_by_flags_and_idx function");
|
||
|
||
m.def("speculate_save_output", &SpeculateSaveWithOutputMsgStatic, "speculate_save_output function");
|
||
|
||
m.def("speculate_clear_accept_nums",&SpeculateClearAcceptNums, "speculate_clear_accept_nums function");
|
||
|
||
m.def("ngram_match", &NgramMatch, "ngram_match function");
|
||
|
||
m.def("hybird_mtp_ngram", &HybridMtpNgram, "ngram_match_mixed function");
|
||
|
||
m.def("draft_model_postprocess",&DraftModelPostprocess, "draft_model_postprocess function");
|
||
|
||
m.def("draft_model_preprocess",&DraftModelPreprocess, "draft_model_preprocess function");
|
||
|
||
m.def("draft_model_update",&DraftModelUpdate, "draft_model_update function");
|
||
|
||
m.def("eagle_get_hidden_states",&EagleGetHiddenStates, "eagle_get_hidden_states function");
|
||
|
||
m.def("eagle_get_self_hidden_states", &EagleGetSelfHiddenStates, "eagle_get_self_hidden_states function");
|
||
|
||
m.def("mtp_step_paddle",&MTPStepPaddle, "mtp_step_paddle function");
|
||
|
||
m.def("speculate_step_paddle",&SpeculateStepPaddle, "speculate_step_paddle function");
|
||
|
||
m.def("merge_prefill_decode_output", &MergePrefillDecodeOutput, "merge_prefill_decode_output function");
|
||
|
||
m.def("rejection_top_p_sampling", &TopPSamplingReject, "rejection_top_p_sampling function");
|
||
|
||
m.def("top_k_renorm_probs", &TopKRenorm, "top_k_renorm_probs function");
|
||
|
||
m.def("min_p_sampling", &MinPSamplingFromProbs, "min_p_sampling function");
|
||
|
||
m.def("save_output", &SaveOutMmsgStatic, "save_output function");
|
||
}
|