Files
FastDeploy/tests/entrypoints/openai/test_serving_completion.py
Yzc216 466cbb5a99 [Feature] Models api (#3073)
* add v1/models interface related

* add model parameters

* default model verification

* unit test

* check model err_msg

* unit test

* type annotation

* model parameter in response

* modify document description

* modify document description

* unit test

* verification

* verification update

* model_name

* pre-commit

* update test case

* update test case

* Update tests/entrypoints/openai/test_serving_models.py

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>

* Update tests/entrypoints/openai/test_serving_models.py

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>

* Update tests/entrypoints/openai/test_serving_models.py

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>

* Update tests/entrypoints/openai/test_serving_models.py

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>

* Update fastdeploy/entrypoints/openai/serving_models.py

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>

---------

Co-authored-by: LiqinruiG <37392159+LiqinruiG@users.noreply.github.com>
Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
2025-08-21 17:02:56 +08:00

112 lines
4.3 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import unittest
from typing import List
from unittest.mock import Mock
from fastdeploy.entrypoints.openai.serving_completion import (
CompletionRequest,
OpenAIServingCompletion,
RequestOutput,
)
class TestOpenAIServingCompletion(unittest.TestCase):
def test_calc_finish_reason_tool_calls(self):
# 创建一个模拟的engine_client并设置reasoning_parser为"ernie_x1"
engine_client = Mock()
engine_client.reasoning_parser = "ernie_x1"
# 创建一个OpenAIServingCompletion实例
serving_completion = OpenAIServingCompletion(engine_client, None, "pid", "ips", 360)
# 创建一个模拟的output并设置finish_reason为"tool_call"
output = {"tool_call": "tool_call"}
# 调用calc_finish_reason方法
result = serving_completion.calc_finish_reason(None, 100, output, False)
# 断言结果为"tool_calls"
assert result == "tool_calls"
def test_calc_finish_reason_stop(self):
# 创建一个模拟的engine_client并设置reasoning_parser为"ernie_x1"
engine_client = Mock()
engine_client.reasoning_parser = "ernie_x1"
# 创建一个OpenAIServingCompletion实例
serving_completion = OpenAIServingCompletion(engine_client, None, "pid", "ips", 360)
# 创建一个模拟的output并设置finish_reason为其他值
output = {"finish_reason": "other_reason"}
# 调用calc_finish_reason方法
result = serving_completion.calc_finish_reason(None, 100, output, False)
# 断言结果为"stop"
assert result == "stop"
def test_calc_finish_reason_length(self):
# 创建一个模拟的engine_client
engine_client = Mock()
# 创建一个OpenAIServingCompletion实例
serving_completion = OpenAIServingCompletion(engine_client, None, "pid", "ips", 360)
# 创建一个模拟的output
output = {}
# 调用calc_finish_reason方法
result = serving_completion.calc_finish_reason(100, 100, output, False)
# 断言结果为"length"
assert result == "length"
def test_request_output_to_completion_response(self):
engine_client = Mock()
# 创建一个OpenAIServingCompletion实例
openai_serving_completion = OpenAIServingCompletion(engine_client, None, "pid", "ips", 360)
final_res_batch: List[RequestOutput] = [
{
"outputs": {
"token_ids": [1, 2, 3],
"text": " world!",
"top_logprobs": {
"a": 0.1,
"b": 0.2,
},
},
"output_token_ids": 3,
},
{
"outputs": {
"token_ids": [4, 5, 6],
"text": " world!",
"top_logprobs": {
"a": 0.3,
"b": 0.4,
},
},
"output_token_ids": 3,
},
]
request: CompletionRequest = Mock()
request.prompt = "Hello, world!"
request.echo = True
request_id = "test_request_id"
created_time = 1655136000
model_name = "test_model"
prompt_batched_token_ids = [[1, 2, 3], [4, 5, 6]]
completion_batched_token_ids = [[7, 8, 9], [10, 11, 12]]
completion_response = openai_serving_completion.request_output_to_completion_response(
final_res_batch=final_res_batch,
request=request,
request_id=request_id,
created_time=created_time,
model_name=model_name,
prompt_batched_token_ids=prompt_batched_token_ids,
completion_batched_token_ids=completion_batched_token_ids,
text_after_process_list=["1", "1"],
)
assert completion_response.id == request_id
assert completion_response.created == created_time
assert completion_response.model == model_name
assert len(completion_response.choices) == 2
# 验证 choices 的 text 属性
assert completion_response.choices[0].text == "Hello, world! world!"
assert completion_response.choices[1].text == "Hello, world! world!"
if __name__ == "__main__":
unittest.main()