mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 09:07:10 +08:00
100 lines
3.1 KiB
C++
100 lines
3.1 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "fastdeploy/vision.h"
|
|
#ifdef WIN32
|
|
const char sep = '\\';
|
|
#else
|
|
const char sep = '/';
|
|
#endif
|
|
|
|
void InitAndInfer(const std::string& model_dir, const std::string& image_file,
|
|
const fastdeploy::RuntimeOption& option) {
|
|
auto model_file = model_dir + sep + "model.pdmodel";
|
|
auto params_file = model_dir + sep + "model.pdiparams";
|
|
auto config_file = model_dir + sep + "deploy.yaml";
|
|
|
|
auto model = fastdeploy::vision::segmentation::PaddleSegModel(
|
|
model_file, params_file, config_file,option);
|
|
|
|
assert(model.Initialized());
|
|
|
|
auto im = cv::imread(image_file);
|
|
auto im_bak = im.clone();
|
|
|
|
fastdeploy::vision::SegmentationResult res;
|
|
if (!model.Predict(&im, &res)) {
|
|
std::cerr << "Failed to predict." << std::endl;
|
|
return;
|
|
}
|
|
|
|
std::cout << res.Str() << std::endl;
|
|
|
|
}
|
|
|
|
// int main(int argc, char* argv[]) {
|
|
// if (argc < 3) {
|
|
// std::cout
|
|
// << "Usage: infer_demo path/to/model_dir path/to/image run_option, "
|
|
// "e.g ./infer_model ./ppseg_model_dir ./test.jpeg 0"
|
|
// << std::endl;
|
|
// std::cout << "The data type of run_option is int, 0: run with cpu; 1: run "
|
|
// "with gpu; 2: run with gpu and use tensorrt backend."
|
|
// << std::endl;
|
|
// return -1;
|
|
// }
|
|
|
|
// fastdeploy::RuntimeOption option;
|
|
// option.UseCpu();
|
|
// option.UsePaddleInferBackend();
|
|
// std::cout<<"Xyy-debug, enable Paddle Backend==!";
|
|
|
|
// std::string model_dir = argv[1];
|
|
// std::string test_image = argv[2];
|
|
// InitAndInfer(model_dir, test_image, option);
|
|
// return 0;
|
|
// }
|
|
|
|
int main(int argc, char* argv[]) {
|
|
if (argc < 4) {
|
|
std::cout << "Usage: infer_demo path/to/quant_model "
|
|
"path/to/image "
|
|
"run_option, "
|
|
"e.g ./infer_demo ./ResNet50_vd_quant ./test.jpeg 0"
|
|
<< std::endl;
|
|
std::cout << "The data type of run_option is int, 0: run on cpu with ORT "
|
|
"backend; 1: run "
|
|
"on gpu with TensorRT backend. "
|
|
<< std::endl;
|
|
return -1;
|
|
}
|
|
|
|
fastdeploy::RuntimeOption option;
|
|
int flag = std::atoi(argv[3]);
|
|
|
|
if (flag == 0) {
|
|
option.UseCpu();
|
|
option.UseOrtBackend();
|
|
std::cout<<"Use ORT!"<<std::endl;
|
|
} else if (flag == 1) {
|
|
option.UseCpu();
|
|
option.UsePaddleInferBackend();
|
|
std::cout<<"Use PP!"<<std::endl;
|
|
}
|
|
|
|
std::string model_dir = argv[1];
|
|
std::string test_image = argv[2];
|
|
InitAndInfer(model_dir, test_image, option);
|
|
return 0;
|
|
} |