mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-09-26 20:41:53 +08:00

* 【FIX】Change the name of sparse attn from moba to plas (#4006) * 更新文档 * 【docs】 update readme (#4000) * 更新文档 * update readme * update docs * 【FIX】Change the name of sparse attn from moba to plas (#3845) * 更新文档 * 更新文档 * 更新文档 * 更新文档 * 修改moba为plas * code style * update ci * code style * update ci * code style --------- Co-authored-by: Jiang-Jia-Jun <163579578+Jiang-Jia-Jun@users.noreply.github.com> * fix max_num_seqs * fix test load attn --------- Co-authored-by: Jiang-Jia-Jun <163579578+Jiang-Jia-Jun@users.noreply.github.com>
1735 lines
70 KiB
Python
1735 lines
70 KiB
Python
"""
|
|
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
|
|
from __future__ import annotations
|
|
|
|
import json
|
|
import os
|
|
from dataclasses import field
|
|
from enum import Enum
|
|
from typing import Any, Dict, List, Literal, Optional, Union
|
|
|
|
import paddle
|
|
import paddle.distributed as dist
|
|
from paddleformers.transformers.configuration_utils import PretrainedConfig
|
|
from typing_extensions import assert_never
|
|
|
|
import fastdeploy
|
|
from fastdeploy import envs
|
|
from fastdeploy.model_executor.layers.quantization.quant_base import QuantConfigBase
|
|
from fastdeploy.multimodal.registry import MultimodalRegistry
|
|
from fastdeploy.platforms import current_platform
|
|
from fastdeploy.scheduler import SchedulerConfig
|
|
from fastdeploy.transformer_utils.config import get_pooling_config
|
|
from fastdeploy.utils import ceil_div, check_unified_ckpt, get_host_ip, get_logger
|
|
|
|
logger = get_logger("config", "config.log")
|
|
|
|
TaskOption = Literal["auto", "generate", "embedding", "embed"]
|
|
|
|
RunnerType = Literal["generate", "pooling"]
|
|
|
|
RunnerOption = Literal["auto", "generate", "pooling"]
|
|
|
|
ConvertOption = Literal["auto", "none", "embed"]
|
|
|
|
ConvertType = Literal["none", "embed"]
|
|
|
|
_ResolvedTask = Literal["generate", "encode", "embed"]
|
|
|
|
_RUNNER_CONVERTS: dict[RunnerType, list[ConvertType]] = {
|
|
"generate": [],
|
|
"pooling": ["embed"],
|
|
}
|
|
|
|
# Some model suffixes are based on auto classes from Transformers:
|
|
# https://huggingface.co/docs/transformers/en/model_doc/auto
|
|
# NOTE: Items higher on this list priority over lower ones
|
|
_SUFFIX_TO_DEFAULTS: list[tuple[str, tuple[RunnerType, ConvertType]]] = [
|
|
("ForCausalLM", ("generate", "none")),
|
|
("ForConditionalGeneration", ("generate", "none")),
|
|
("ChatModel", ("generate", "none")),
|
|
("LMHeadModel", ("generate", "none")),
|
|
("ForTextEncoding", ("pooling", "embed")),
|
|
("EmbeddingModel", ("pooling", "embed")),
|
|
("ForSequenceClassification", ("pooling", "classify")),
|
|
("ForAudioClassification", ("pooling", "classify")),
|
|
("ForImageClassification", ("pooling", "classify")),
|
|
("ForVideoClassification", ("pooling", "classify")),
|
|
("ClassificationModel", ("pooling", "classify")),
|
|
("ForRewardModeling", ("pooling", "reward")),
|
|
("RewardModel", ("pooling", "reward")),
|
|
# Let other `*Model`s take priority
|
|
("Model", ("pooling", "embed")),
|
|
]
|
|
|
|
|
|
def iter_architecture_defaults():
|
|
yield from _SUFFIX_TO_DEFAULTS
|
|
|
|
|
|
def try_match_architecture_defaults(
|
|
architecture: str,
|
|
*,
|
|
runner_type: Optional[RunnerType] = None,
|
|
convert_type: Optional[ConvertType] = None,
|
|
):
|
|
for suffix, (default_runner_type, default_convert_type) in iter_architecture_defaults():
|
|
if (
|
|
(runner_type is None or runner_type == default_runner_type)
|
|
and (convert_type is None or convert_type == default_convert_type)
|
|
and architecture.endswith(suffix)
|
|
):
|
|
return suffix, (default_runner_type, default_convert_type)
|
|
return None
|
|
|
|
|
|
class MoEPhase:
|
|
"""
|
|
The generation phase of the moe.
|
|
"""
|
|
|
|
def __init__(self, phase="prefill"):
|
|
self._phase = phase
|
|
|
|
@property
|
|
def phase(self):
|
|
return self._phase
|
|
|
|
@phase.setter
|
|
def phase(self, value):
|
|
if value not in ["prefill", "decode"]:
|
|
raise ValueError(f"The moe_phase is invalid, only support prefill and decode, but got {value}")
|
|
else:
|
|
self._phase = value
|
|
|
|
|
|
class ErnieArchitectures:
|
|
"""Helper class for ERNIE architecture check."""
|
|
|
|
ARCHITECTURES = {
|
|
"Ernie4_5ForCausalLM", # 0.3B-PT
|
|
"Ernie4_5_ForCausalLM",
|
|
"Ernie4_5_MoeForCausalLM",
|
|
"Ernie4_5_VLMoeForConditionalGeneration",
|
|
}
|
|
|
|
@classmethod
|
|
def register_ernie_model_arch(cls, model_class):
|
|
if model_class.name().startswith("Ernie") and model_class.name() not in cls.ARCHITECTURES:
|
|
cls.ARCHITECTURES.add(model_class.name())
|
|
|
|
@classmethod
|
|
def contains_ernie_arch(cls, architectures):
|
|
"""Check if any ERNIE architecture is present in the given architectures."""
|
|
return any(arch in architectures for arch in cls.ARCHITECTURES)
|
|
|
|
@classmethod
|
|
def is_ernie_arch(cls, architecture):
|
|
"""Check if the given architecture is an ERNIE architecture."""
|
|
return architecture in cls.ARCHITECTURES
|
|
|
|
|
|
PRETRAINED_INIT_CONFIGURATION = {
|
|
"top_p": 1.0,
|
|
"temperature": 1.0,
|
|
"rope_theta": 10000.0,
|
|
"penalty_score": 1.0,
|
|
"frequency_score": 0.0,
|
|
"presence_score": 0.0,
|
|
"min_length": 1,
|
|
"num_key_value_heads": -1,
|
|
"start_layer_index": 0,
|
|
"moe_num_shared_experts": 0,
|
|
"moe_layer_start_index": 0,
|
|
"num_max_dispatch_tokens_per_rank": 128,
|
|
"moe_use_aux_free": False,
|
|
"vocab_size": -1,
|
|
"hidden_dropout_prob": 0.0,
|
|
"initializer_range": 0.02,
|
|
"max_position_embeddings": 512,
|
|
"quantization_config": None,
|
|
"tie_word_embeddings": False,
|
|
"rms_norm_eps": 1e-5,
|
|
"moe_num_experts": None,
|
|
"moe_layer_end_index": None,
|
|
}
|
|
|
|
|
|
class ModelConfig:
|
|
"""
|
|
The configuration class to store the configuration of a `LLM`.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
args,
|
|
):
|
|
self.model = ""
|
|
self.is_quantized = False
|
|
self.max_model_len = 0
|
|
self.dtype = ""
|
|
self.enable_logprob = False
|
|
self.enable_redundant_experts = False
|
|
self.redundant_experts_num = 0
|
|
self.seed = 0
|
|
self.quantization = None
|
|
self.reasoning_parser = None
|
|
self.pad_token_id: int = -1
|
|
self.eos_tokens_lens: int = 2
|
|
self.lm_head_fp32: bool = False
|
|
self.model_format = "auto"
|
|
self.runner = "auto"
|
|
self.convert = "auto"
|
|
self.pooler_config: Optional["PoolerConfig"] = field(init=False)
|
|
self.override_pooler_config: Optional[Union[dict, "PoolerConfig"]] = None
|
|
self.revision = None
|
|
|
|
self.partial_rotary_factor: float = 1.0
|
|
self.num_nextn_predict_layers = 0
|
|
for key, value in args.items():
|
|
if hasattr(self, key) and value != "None":
|
|
setattr(self, key, value)
|
|
|
|
assert self.model != ""
|
|
pretrained_config, _ = PretrainedConfig.get_config_dict(self.model)
|
|
self.pretrained_config = PretrainedConfig.from_dict(pretrained_config)
|
|
|
|
# set attribute from pretrained_config
|
|
for key, value in pretrained_config.items():
|
|
setattr(self, key, value)
|
|
|
|
# we need set default value when not exist
|
|
for key, value in PRETRAINED_INIT_CONFIGURATION.items():
|
|
if not hasattr(self, key):
|
|
setattr(self, key, value)
|
|
|
|
if not hasattr(self, "head_dim"):
|
|
self.head_dim = self.hidden_size // self.num_attention_heads
|
|
|
|
if hasattr(self, "vision_config"):
|
|
self.vision_config = PretrainedConfig.from_dict(self.vision_config)
|
|
|
|
self.ori_vocab_size = args.get("ori_vocab_size", self.vocab_size)
|
|
|
|
architectures = self.architectures[0]
|
|
|
|
if MultimodalRegistry.contains_model(architectures):
|
|
self.enable_mm = True
|
|
else:
|
|
self.enable_mm = False
|
|
|
|
self.is_unified_ckpt = check_unified_ckpt(self.model)
|
|
|
|
self.override_name_from_config()
|
|
self.read_from_env()
|
|
self.read_model_config()
|
|
self.runner_type = self._get_runner_type(self.architectures, self.runner)
|
|
self.convert_type = self._get_convert_type(self.architectures, self.runner_type, self.convert)
|
|
|
|
registry = self.registry
|
|
is_generative_model = registry.is_text_generation_model(self.architectures, self)
|
|
is_pooling_model = registry.is_pooling_model(self.architectures, self)
|
|
is_multimodal_model = registry.is_multimodal_model(self.architectures, self)
|
|
|
|
if self.runner_type == "generate" and not is_generative_model:
|
|
if is_multimodal_model:
|
|
pass
|
|
else:
|
|
generate_converts = _RUNNER_CONVERTS["generate"]
|
|
if self.convert_type not in generate_converts:
|
|
raise ValueError("This model does not support '--runner generate.")
|
|
if self.runner_type == "pooling" and not is_pooling_model:
|
|
pooling_converts = _RUNNER_CONVERTS["pooling"]
|
|
if self.convert_type not in pooling_converts:
|
|
convert_option = "<" + "|".join(pooling_converts) + ">"
|
|
raise ValueError(
|
|
"This model does not support `--runner pooling`. "
|
|
f"You can pass `--convert {convert_option} to adapt "
|
|
"it into a pooling model."
|
|
)
|
|
|
|
self.supported_tasks = self._get_supported_tasks(self.architectures, self.runner_type, self.convert_type)
|
|
model_info, arch = registry.inspect_model_cls(self.architectures, self)
|
|
self._model_info = model_info
|
|
self._architecture = arch
|
|
|
|
self.pooler_config = self._init_pooler_config()
|
|
|
|
@property
|
|
def registry(self):
|
|
from fastdeploy.model_executor.models.model_base import ModelRegistry
|
|
|
|
return ModelRegistry()
|
|
|
|
def override_name_from_config(self):
|
|
"""
|
|
Override attribute names from the exported model's configuration.
|
|
"""
|
|
|
|
if not self.is_unified_ckpt and hasattr(self, "infer_model_mp_num"):
|
|
self.tensor_parallel_size = self.infer_model_mp_num
|
|
del self.infer_model_mp_num
|
|
|
|
if hasattr(self, "num_hidden_layers"):
|
|
if hasattr(self, "remove_tail_layer"):
|
|
if self.remove_tail_layer is True:
|
|
self.num_hidden_layers -= 1
|
|
elif isinstance(self.remove_tail_layer, int):
|
|
self.num_hidden_layers -= self.remove_tail_layer
|
|
|
|
if not hasattr(self, "mla_use_absorb"):
|
|
self.mla_use_absorb = False
|
|
|
|
def read_from_env(self):
|
|
"""
|
|
Read configuration information from environment variables and update the object's attributes.
|
|
If an attribute is not present or is an empty string in the environment variables, use the default value.
|
|
"""
|
|
self.max_stop_seqs_num = int(envs.FD_MAX_STOP_SEQS_NUM)
|
|
self.stop_seqs_max_len = int(envs.FD_STOP_SEQS_MAX_LEN)
|
|
|
|
def reset_config_value(key, value):
|
|
if not hasattr(self, key.lower()):
|
|
if os.getenv(key, None):
|
|
value = eval(os.getenv(key))
|
|
logger.info(f"Get parameter `{key}` = {value} from environment.")
|
|
else:
|
|
logger.info(f"Parameter `{key}` will use default value {value}.")
|
|
setattr(self, key.lower(), value)
|
|
|
|
reset_config_value("COMPRESSION_RATIO", 1.0)
|
|
reset_config_value("ROPE_THETA", 10000)
|
|
|
|
def read_model_config(self):
|
|
config_path = os.path.join(self.model, "config.json")
|
|
if os.path.exists(config_path):
|
|
self.model_config = json.load(open(config_path, "r", encoding="utf-8"))
|
|
if "torch_dtype" in self.model_config and "dtype" in self.model_config:
|
|
raise ValueError(
|
|
"Only one of 'torch_dtype' or 'dtype' should be present in config.json. "
|
|
"Found both, which indicates an ambiguous model format. "
|
|
"Please ensure your config.json contains only one dtype field."
|
|
)
|
|
elif "torch_dtype" in self.model_config:
|
|
self.model_format = "torch"
|
|
logger.info("The model format is Hugging Face")
|
|
elif "dtype" in self.model_config:
|
|
self.model_format = "paddle"
|
|
logger.info("The model format is Paddle")
|
|
else:
|
|
raise ValueError(
|
|
"Unknown model format. Please ensure your config.json contains "
|
|
"either 'torch_dtype' (for Hugging Face models) or 'dtype' (for Paddle models) field. "
|
|
f"Config file path: {config_path}"
|
|
)
|
|
|
|
def _get_default_runner_type(
|
|
self,
|
|
architectures: list[str],
|
|
) -> RunnerType:
|
|
registry = self.registry
|
|
if get_pooling_config(self.model, self.revision):
|
|
return "pooling"
|
|
for arch in architectures:
|
|
if arch in registry.get_supported_archs():
|
|
if registry.is_pooling_model(architectures, self):
|
|
return "pooling"
|
|
if registry.is_text_generation_model(architectures, self):
|
|
return "generate"
|
|
match = try_match_architecture_defaults(arch)
|
|
if match:
|
|
_, (runner_type, _) = match
|
|
return runner_type
|
|
return "generate"
|
|
|
|
def _get_default_convert_type(
|
|
self,
|
|
architectures: list[str],
|
|
runner_type: RunnerType,
|
|
) -> ConvertType:
|
|
registry = self.registry
|
|
|
|
for arch in architectures:
|
|
if arch in registry.get_supported_archs():
|
|
if runner_type == "generate" and registry.is_text_generation_model(architectures, self):
|
|
return "none"
|
|
if runner_type == "pooling" and registry.is_pooling_model(architectures, self):
|
|
return "none"
|
|
match = try_match_architecture_defaults(arch, runner_type=runner_type)
|
|
if match:
|
|
_, (_, convert_type) = match
|
|
return convert_type
|
|
|
|
# This is to handle Sentence Transformers models that use *ForCausalLM
|
|
# and also multi-modal pooling models which are not defined as
|
|
# Sentence Transformers models
|
|
if runner_type == "pooling":
|
|
return "embed"
|
|
|
|
return "none"
|
|
|
|
def _get_runner_type(
|
|
self,
|
|
architectures: list[str],
|
|
runner: RunnerOption,
|
|
) -> RunnerType:
|
|
if runner != "auto":
|
|
return runner
|
|
|
|
runner_type = self._get_default_runner_type(architectures)
|
|
if runner_type != "generate":
|
|
logger.info(
|
|
"Resolved `--runner auto` to `--runner %s`. " "Pass the value explicitly to silence this message.",
|
|
runner_type,
|
|
)
|
|
|
|
return runner_type
|
|
|
|
def _get_convert_type(
|
|
self,
|
|
architectures: list[str],
|
|
runner_type: RunnerType,
|
|
convert: ConvertOption,
|
|
) -> ConvertType:
|
|
if convert != "auto":
|
|
return convert
|
|
|
|
convert_type = self._get_default_convert_type(architectures, runner_type)
|
|
|
|
if convert_type != "none":
|
|
logger.info(
|
|
"Resolved `--convert auto` to `--convert %s`. " "Pass the value explicitly to silence this message.",
|
|
convert_type,
|
|
)
|
|
|
|
return convert_type
|
|
|
|
def _get_supported_generation_tasks(
|
|
self,
|
|
architectures: list[str],
|
|
convert_type: ConvertType,
|
|
) -> list[_ResolvedTask]:
|
|
registry = self.registry
|
|
|
|
supported_tasks = list[_ResolvedTask]()
|
|
if registry.is_text_generation_model(architectures, self) or convert_type in _RUNNER_CONVERTS["generate"]:
|
|
supported_tasks.append("generate")
|
|
|
|
# TODO:Temporarily does not support transcription.
|
|
return supported_tasks
|
|
|
|
def _get_default_pooling_task(
|
|
self,
|
|
architectures: list[str],
|
|
) -> Literal["embed"]:
|
|
# Temporarily does not support classification and reward.
|
|
for arch in architectures:
|
|
match = try_match_architecture_defaults(arch, runner_type="pooling")
|
|
if match:
|
|
_, (_, convert_type) = match
|
|
assert convert_type != "none"
|
|
return convert_type
|
|
|
|
return "embed"
|
|
|
|
def _get_supported_pooling_tasks(
|
|
self,
|
|
architectures: list[str],
|
|
convert_type: ConvertType,
|
|
) -> list[_ResolvedTask]:
|
|
registry = self.registry
|
|
|
|
supported_tasks = list[_ResolvedTask]()
|
|
if registry.is_pooling_model(architectures, self) or convert_type in _RUNNER_CONVERTS["pooling"]:
|
|
supported_tasks.append("encode")
|
|
|
|
extra_task = self._get_default_pooling_task(architectures) if convert_type == "none" else convert_type
|
|
supported_tasks.append(extra_task)
|
|
|
|
return supported_tasks
|
|
|
|
def _get_supported_tasks(
|
|
self,
|
|
architectures: list[str],
|
|
runner_type: RunnerType,
|
|
convert_type: ConvertType,
|
|
) -> list[_ResolvedTask]:
|
|
if runner_type == "generate":
|
|
return self._get_supported_generation_tasks(architectures, convert_type)
|
|
if runner_type == "pooling":
|
|
return self._get_supported_pooling_tasks(architectures, convert_type)
|
|
|
|
assert_never(runner_type)
|
|
|
|
def _init_pooler_config(self) -> Optional["PoolerConfig"]:
|
|
if self.runner_type == "pooling":
|
|
if isinstance(self.override_pooler_config, dict):
|
|
self.override_pooler_config = PoolerConfig(**self.override_pooler_config)
|
|
|
|
pooler_config = self.override_pooler_config or PoolerConfig()
|
|
|
|
base_config = get_pooling_config(self.model, self.revision)
|
|
if base_config is not None:
|
|
for k, v in base_config.items():
|
|
if getattr(pooler_config, k) is None:
|
|
setattr(pooler_config, k, v)
|
|
|
|
default_pooling_type = self._model_info.default_pooling_type
|
|
if pooler_config.pooling_type is None:
|
|
pooler_config.pooling_type = default_pooling_type
|
|
|
|
return pooler_config
|
|
|
|
return None
|
|
|
|
def _get_download_model(self, model_name, model_type="default"):
|
|
# TODO: Provide dynamic graph for self-downloading and save to the specified download directory.
|
|
pass
|
|
|
|
def print(self):
|
|
"""
|
|
Print all configuration information.
|
|
"""
|
|
logger.info("Model Configuration Information :")
|
|
for k, v in self.__dict__.items():
|
|
logger.info("{:<20}:{:<6}{}".format(k, "", v))
|
|
logger.info("=============================================================")
|
|
|
|
|
|
class ParallelConfig:
|
|
"""Configuration for the distributed execution."""
|
|
|
|
def __init__(
|
|
self,
|
|
args,
|
|
):
|
|
self.sequence_parallel = False # Whether to enable sequence parallelism.
|
|
self.use_ep = False # Whether to enable Expert Parallelism
|
|
self.moe_phase = MoEPhase("prefill") # Generation phase
|
|
self.msg_queue_id = 1 # message queue id
|
|
|
|
self.tensor_parallel_rank = 0 # TP rank ID
|
|
self.tensor_parallel_size = 1 # TP degree
|
|
self.expert_parallel_rank = 0 # EP rank ID
|
|
self.expert_parallel_size = 1 # EP degree
|
|
self.data_parallel_size = 1 # DP degree
|
|
self.enable_expert_parallel = False
|
|
self.local_data_parallel_id = 0
|
|
# The embedding weight distributed on your gpu cards is divided by row or column.
|
|
# Defaults to False means divide by row. When vocab_size can not be divided by world_size
|
|
# but hidden_size can, we can consider split embedding weight by column.
|
|
"""
|
|
From old wersion worker args
|
|
TODO(gongshaotian): Reclassify
|
|
"""
|
|
# Set default block num for profile run
|
|
self.total_block_num: int = 2000
|
|
# block size
|
|
self.block_size: int = 64
|
|
# Engine worker queue port
|
|
self.engine_worker_queue_port: str = "9923"
|
|
# Max model len
|
|
self.max_model_len: int = 3072 # max_seq_len
|
|
# cuda visible devices
|
|
self.device_ids: str = "0"
|
|
# Input dtype
|
|
self.dtype: str = "bfloat16"
|
|
# Encoder's decoder num
|
|
self.enc_dec_block_num: int = 1
|
|
# First token id
|
|
self.first_token_id: int = 1
|
|
# Process ID of engine
|
|
self.engine_pid: Optional[int] = None
|
|
# Do profile or not
|
|
self.do_profile: bool = False
|
|
|
|
# guided decoding backend
|
|
self.guided_decoding_backend: str = None
|
|
# disable any whitespace for guided decoding
|
|
self.disable_any_whitespace: bool = True
|
|
self.pod_ip: str = None
|
|
# enable the custom all-reduce kernel and fall back to NCCL(dist.all_reduce).
|
|
self.disable_custom_all_reduce: bool = False
|
|
for key, value in args.items():
|
|
if hasattr(self, key):
|
|
setattr(self, key, value)
|
|
if isinstance(self.engine_worker_queue_port, str):
|
|
self.engine_worker_queue_port = [int(port) for port in self.engine_worker_queue_port.split(",")]
|
|
logger.info(f"engine_worker_queue_port: {self.engine_worker_queue_port}")
|
|
elif isinstance(self.engine_worker_queue_port, int):
|
|
self.engine_worker_queue_port = [self.engine_worker_queue_port]
|
|
# currently, the expert parallel size is equal data parallel size
|
|
if self.enable_expert_parallel:
|
|
self.expert_parallel_size = self.data_parallel_size * self.tensor_parallel_size
|
|
else:
|
|
self.expert_parallel_size = 1
|
|
self.use_ep = self.expert_parallel_size > 1
|
|
|
|
# pd_disaggregation
|
|
use_pd_disaggregation: int = int(os.getenv("FLAGS_use_pd_disaggregation", 0))
|
|
use_pd_disaggregation_per_chunk: int = int(os.getenv("FLAGS_use_pd_disaggregation_per_chunk", 0))
|
|
if use_pd_disaggregation_per_chunk:
|
|
self.pd_disaggregation_mode = "per_chunk"
|
|
elif use_pd_disaggregation:
|
|
self.pd_disaggregation_mode = "per_query"
|
|
else:
|
|
self.pd_disaggregation_mode = "None"
|
|
|
|
def set_communicate_group(self):
|
|
# different tp group id
|
|
# prevent different tp_groups using the same group_id
|
|
tp_gid_offset = envs.FD_TP_GROUP_GID_OFFSET
|
|
dist.collective._set_custom_gid(self.data_parallel_rank + tp_gid_offset)
|
|
|
|
self.tp_group = dist.new_group(
|
|
range(
|
|
self.data_parallel_rank * self.tensor_parallel_size,
|
|
(self.data_parallel_rank + 1) * self.tensor_parallel_size,
|
|
)
|
|
)
|
|
dist.collective._set_custom_gid(None)
|
|
|
|
# same ep group id
|
|
if self.enable_expert_parallel:
|
|
dist.collective._set_custom_gid(self.data_parallel_size + tp_gid_offset)
|
|
self.ep_group = dist.new_group(range(self.expert_parallel_size))
|
|
dist.collective._set_custom_gid(None)
|
|
|
|
logger.info(
|
|
f"data_parallel_size: {self.data_parallel_size}, tensor_parallel_size: {self.tensor_parallel_size}, expert_parallel_size: {self.expert_parallel_size}, data_parallel_rank: {self.data_parallel_rank}, tensor_parallel_rank: {self.tensor_parallel_rank}, expert_parallel_rank: {self.expert_parallel_rank}, tp_group: {self.tp_group}."
|
|
)
|
|
|
|
def print(self):
|
|
"""
|
|
print all config
|
|
|
|
"""
|
|
logger.info("Parallel Configuration Information :")
|
|
for k, v in self.__dict__.items():
|
|
logger.info("{:<20}:{:<6}{}".format(k, "", v))
|
|
logger.info("=============================================================")
|
|
|
|
|
|
class SpeculativeConfig:
|
|
"""
|
|
Configuration for speculative decoding.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
args,
|
|
):
|
|
self.method_list = ["ngram_match", "mtp"]
|
|
self.mtp_strategy_list = ["default", "with_ngram"]
|
|
|
|
# speculative method, choose in [None, "ngram_match", "mtp", "hybrid_mtp_ngram"]
|
|
self.method: Optional[str] = None
|
|
# mtp strategy in mtp-method
|
|
self.mtp_strategy = "default"
|
|
# the max length of speculative tokens
|
|
self.num_speculative_tokens: int = 1
|
|
# the model runner step of draft model/mtp...
|
|
self.num_model_steps: int = 1
|
|
# the max length of candidate tokens for speculative method
|
|
self.max_candidate_len: int = 5
|
|
# the max length of verify window for speculative method
|
|
self.verify_window: int = 2
|
|
# ngram match
|
|
self.max_ngram_size: int = 5
|
|
self.min_ngram_size: int = 2
|
|
# model for mtp/eagle/draft_model
|
|
self.model: Optional[str] = None
|
|
# quantization of model
|
|
self.quantization: Optional[Dict[str, Any]] = None
|
|
# allocate more blocks to prevent mtp from finishing the block earlier than the main model
|
|
# Fixed now
|
|
self.num_gpu_block_expand_ratio: Optional[float] = 1
|
|
# To distinguish the main model and draft model(mtp/eagle/draftmodel)
|
|
# ["main", "mtp"]
|
|
self.model_type: Optional[str] = "main"
|
|
# TODO(liuzichang): To reduce memory usage, MTP shares the main model's lm_head and embedding layers.
|
|
# A trick method is currently used to enable this sharing.
|
|
# This will be replaced with a more standardized solution in the future.
|
|
self.sharing_model = None
|
|
# During benchmarking, we need to enforce that the number of accepted tokens is 1.
|
|
# This means no tokens from MTP are accepted.
|
|
# This ensures that the specified simulation acceptance rate is not affected.
|
|
self.benchmark_mode: bool = False
|
|
|
|
self.num_extra_cache_layer = 0
|
|
|
|
for key, value in args.items():
|
|
if hasattr(self, key):
|
|
setattr(self, key, value)
|
|
|
|
self.read_model_config()
|
|
self.reset()
|
|
|
|
def read_model_config(self):
|
|
"""
|
|
Read configuration from file.
|
|
"""
|
|
self.model_config = {}
|
|
if not self.enabled_speculative_decoding():
|
|
return
|
|
|
|
self.is_unified_ckpt = check_unified_ckpt(self.model)
|
|
if self.model is None:
|
|
return
|
|
|
|
self.config_path = os.path.join(self.model, "config.json")
|
|
if os.path.exists(self.config_path):
|
|
self.model_config = json.load(open(self.config_path, "r", encoding="utf-8"))
|
|
|
|
def reset(self):
|
|
"""
|
|
Reset configuration.
|
|
"""
|
|
|
|
def reset_value(cls, value_name, key=None, default=None):
|
|
if key is not None and key in cls.model_config:
|
|
setattr(cls, value_name, cls.model_config[key])
|
|
elif getattr(cls, value_name, None) is None:
|
|
setattr(cls, value_name, default)
|
|
|
|
if not self.enabled_speculative_decoding():
|
|
return
|
|
|
|
# NOTE(liuzichang): We will support multi-layer in future
|
|
if self.method in ["mtp"]:
|
|
self.num_extra_cache_layer = 1
|
|
|
|
def enabled_speculative_decoding(self):
|
|
"""
|
|
Check if speculative decoding is enabled.
|
|
"""
|
|
if self.method is None:
|
|
return False
|
|
return True
|
|
|
|
def to_json_string(self):
|
|
"""
|
|
Convert speculative_config to json string.
|
|
"""
|
|
return json.dumps({key: value for key, value in self.__dict__.items() if value is not None})
|
|
|
|
def print(self):
|
|
"""
|
|
print all config
|
|
|
|
"""
|
|
logger.info("Speculative Decoding Configuration Information :")
|
|
for k, v in self.__dict__.items():
|
|
logger.info("{:<20}:{:<6}{}".format(k, "", v))
|
|
logger.info("=============================================================")
|
|
|
|
def check_legality_parameters(
|
|
self,
|
|
) -> None:
|
|
"""Check the legality of parameters passed in from the command line"""
|
|
if self.method is not None:
|
|
assert (
|
|
self.method in self.method_list
|
|
), f"speculative method only support {self.method_list} now, but get {self.method}."
|
|
|
|
assert (
|
|
self.num_speculative_tokens >= 1 and self.num_speculative_tokens <= 5
|
|
), f"num_speculative_tokens only support in range[1, 5], but get {self.num_speculative_tokens}."
|
|
assert (
|
|
self.num_model_steps >= 1 and self.num_model_steps <= 5
|
|
), f"num_model_steps only support in range[1, 5], but get {self.num_model_steps}."
|
|
|
|
if self.method in ["mtp", "hybrid_mtp_ngram"]:
|
|
if self.num_speculative_tokens < self.num_model_steps:
|
|
logger.warning(
|
|
f"Get num_model_steps > num_speculative_tokens. Reset num_speculative_tokens to {self.num_model_steps}"
|
|
)
|
|
self.num_speculative_tokens = self.num_model_steps
|
|
|
|
assert (
|
|
self.mtp_strategy in self.mtp_strategy_list
|
|
), f"mtp_strategy_list only support {self.mtp_strategy_list}, but get {self.mtp_strategy}"
|
|
|
|
def __str__(self) -> str:
|
|
return self.to_json_string()
|
|
|
|
|
|
class DeviceConfig:
|
|
"""
|
|
Configuration for device settings.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
args,
|
|
):
|
|
self.device_type = "cuda"
|
|
for key, value in args.items():
|
|
if hasattr(self, key):
|
|
setattr(self, key, value)
|
|
|
|
|
|
class GraphOptimizationConfig:
|
|
"""
|
|
Configuration for compute graph level optimization.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
args,
|
|
):
|
|
"""The Top-level graph optimization contral corresponds to different backends.
|
|
- 0: dyncmic graph
|
|
- 1: static graph
|
|
- 2: static graph + cinn compilation backend
|
|
"""
|
|
self.graph_opt_level: int = 0
|
|
|
|
# CUDA Graph Config
|
|
""" Whether to use cudagraph.
|
|
- False: cudagraph is not used.
|
|
- True: cudagraph is used.
|
|
It requires that all input buffers have fixed addresses, and all
|
|
splitting ops write their outputs to input buffers.
|
|
- With dyncmic graph backend: ...
|
|
- With static graph backend: WIP
|
|
"""
|
|
self.sot_warmup_sizes: list[int] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 16, 32, 64, 128]
|
|
""" Number of warmup runs for SOT warmup. """
|
|
self.use_cudagraph: bool = False
|
|
"""Sizes to capture cudagraph.
|
|
- None (default): capture sizes are inferred from llm config.
|
|
- list[int]: capture sizes are specified as given."""
|
|
self.cudagraph_capture_sizes: Optional[list[int]] = None
|
|
""" Number of warmup runs for cudagraph. """
|
|
self.cudagraph_num_of_warmups: int = 2
|
|
"""Whether to copy input tensors for cudagraph.
|
|
If the caller can guarantee that the same input buffers
|
|
are always used, it can set this to False. Otherwise, it should
|
|
set this to True."""
|
|
self.cudagraph_copy_inputs: bool = False
|
|
""" In static graph, this is an operation list that does not need to be captured by the CUDA graph.
|
|
CudaGraphBackend will split these operations from the static graph.
|
|
Example usage:
|
|
cudagraph_splitting_ops = ["paddle.unified_attention"]
|
|
|
|
Note: If want to use subgraph capture functionality in a dynamic graph,
|
|
can manually split the model into multiple layers and apply the @support_graph_optimization decorator
|
|
only to the layer where CUDA graph functionality is required.
|
|
"""
|
|
self.cudagraph_splitting_ops: list[str] = []
|
|
""" Whether to use a full cuda graph for the entire forward pass rather than
|
|
splitting certain operations such as attention into subgraphs.
|
|
Thus this flag cannot be used together with splitting_ops."""
|
|
self.cudagraph_only_prefill: bool = False
|
|
"""When cudagraph_only_prefill is False, only capture decode-only.
|
|
When cudagraph_only_prefill is True, only capture prefill-only.
|
|
Now don't support capture both decode-only and prefill-only"""
|
|
self.full_cuda_graph: bool = True
|
|
|
|
self.max_capture_size: int = None
|
|
self.real_shape_to_captured_size: dict[int, int] = None
|
|
# CINN Config ...
|
|
if args is not None:
|
|
for key, value in args.items():
|
|
if hasattr(self, key):
|
|
setattr(self, key, value)
|
|
|
|
self.check_legality_parameters()
|
|
|
|
def init_with_cudagrpah_size(self, max_capture_size: int = 0) -> None:
|
|
"""
|
|
Initialize cuda graph capture sizes and
|
|
pre-compute the mapping from batch size to padded graph size
|
|
"""
|
|
# Regular capture sizes
|
|
self.cudagraph_capture_sizes = [size for size in self.cudagraph_capture_sizes if size <= max_capture_size]
|
|
dedup_sizes = list(set(self.cudagraph_capture_sizes))
|
|
if len(dedup_sizes) < len(self.cudagraph_capture_sizes):
|
|
logger.info(
|
|
("cudagraph sizes specified by model runner" " %s is overridden by config %s"),
|
|
self.cudagraph_capture_sizes,
|
|
dedup_sizes,
|
|
)
|
|
self.cudagraph_capture_sizes = dedup_sizes
|
|
|
|
# Sort to make sure cudagraph capture sizes are in descending order
|
|
self.cudagraph_capture_sizes.sort(reverse=True)
|
|
self.max_capture_size = self.cudagraph_capture_sizes[0] if self.cudagraph_capture_sizes else 0
|
|
|
|
# Pre-compute the mapping from shape to padded graph size
|
|
self.real_shape_to_captured_size = {}
|
|
for end, start in zip(self.cudagraph_capture_sizes, self.cudagraph_capture_sizes[1:] + [0]):
|
|
for bs in range(start, end):
|
|
if bs == start:
|
|
self.real_shape_to_captured_size[bs] = start
|
|
else:
|
|
self.real_shape_to_captured_size[bs] = end
|
|
self.real_shape_to_captured_size[self.max_capture_size] = self.max_capture_size
|
|
|
|
def _set_cudagraph_sizes(self, max_num_seqs: int = 0):
|
|
"""
|
|
Calculate a series of candidate capture sizes,
|
|
and then extract a portion of them as the capture list for the CUDA graph based on user input.
|
|
"""
|
|
# Shape [1, 2, 4, 8, 16, ... 120, 128]
|
|
draft_capture_sizes = [1, 2, 4] + [8 * i for i in range(1, 17)]
|
|
# Shape [128, 144, ... 240, 256]
|
|
draft_capture_sizes += [16 * i for i in range(9, 17)]
|
|
# Shape [256, 288, ... 992, 1024]
|
|
draft_capture_sizes += [32 * i for i in range(9, 33)]
|
|
|
|
draft_capture_sizes.append(max_num_seqs)
|
|
self.cudagraph_capture_sizes = sorted(draft_capture_sizes)
|
|
|
|
def to_json_string(self):
|
|
"""
|
|
Convert speculative_config to json string.
|
|
"""
|
|
return json.dumps({key: value for key, value in self.__dict__.items()})
|
|
|
|
def __str__(self) -> str:
|
|
return self.to_json_string()
|
|
|
|
def check_legality_parameters(
|
|
self,
|
|
) -> None:
|
|
"""Check the legality of parameters passed in from the command line"""
|
|
|
|
if self.graph_opt_level is not None:
|
|
assert self.graph_opt_level in [
|
|
0,
|
|
1,
|
|
2,
|
|
], "In graph optimization config, graph_opt_level can only take the values of 0, 1 and 2."
|
|
if self.use_cudagraph is not None:
|
|
assert (
|
|
type(self.use_cudagraph) is bool
|
|
), "In graph optimization config, type of use_cudagraph must is bool."
|
|
if self.cudagraph_capture_sizes is not None:
|
|
assert (
|
|
type(self.cudagraph_capture_sizes) is list
|
|
), "In graph optimization config, type of cudagraph_capture_sizes must is list."
|
|
assert (
|
|
len(self.cudagraph_capture_sizes) > 0
|
|
), "In graph optimization config, When opening the CUDA graph, it is forbidden to set the capture sizes to an empty list."
|
|
|
|
def update_use_cudagraph(self, argument: bool):
|
|
"""
|
|
Unified user specifies the use_cudagraph parameter through two methods,
|
|
'--use-cudagraph' and '--graph-optimization-config'
|
|
"""
|
|
if self.use_cudagraph is None:
|
|
# User only set '--use-cudagraph'
|
|
self.use_cudagraph = argument
|
|
else:
|
|
# User both set '--use-cudagraph' and '--graph-optimization-config'
|
|
if self.use_cudagraph is False and argument is True:
|
|
raise ValueError(
|
|
"Invalid parameter: Cannot set --use-cudagraph and --graph-optimization-config '{\"use_cudagraph\":false}' simultaneously."
|
|
)
|
|
argument = self.use_cudagraph
|
|
|
|
|
|
class PlasAttentionConfig:
|
|
def __init__(
|
|
self,
|
|
args,
|
|
):
|
|
self.plas_encoder_top_k_left: int = None
|
|
self.plas_encoder_top_k_right: int = None
|
|
"The sparse topk of encoder attention is located at [plas_encoder_top_k_left, plas_encoder top_k_right]"
|
|
self.plas_decoder_top_k_left: int = None
|
|
self.plas_decoder_top_k_right: int = None
|
|
"The sparse topk of decoder attention is located at [plas_decoder_top_k_left, plas_decoder top_k_right]"
|
|
self.plas_use_encoder_seq_limit: int = None
|
|
"When the number of encdoer token is less than plas_use_encoder_seq_limit, it is not sparse"
|
|
self.plas_use_decoder_seq_limit: int = None
|
|
"When the number of decdoer token is less than plas_use_decoder_seq_limit, it is not sparse"
|
|
self.plas_block_size: int = 128
|
|
self.mlp_weight_name: str = "plas_attention_mlp_weight.safetensors"
|
|
self.plas_max_seq_length: int = 128 * 1024
|
|
if args is not None:
|
|
for key, value in args.items():
|
|
if hasattr(self, key):
|
|
setattr(self, key, value)
|
|
if self.plas_use_encoder_seq_limit is None and self.plas_encoder_top_k_left is not None:
|
|
self.plas_use_encoder_seq_limit = self.plas_encoder_top_k_left * self.plas_block_size
|
|
if self.plas_use_decoder_seq_limit is None and self.plas_decoder_top_k_left is not None:
|
|
self.plas_use_decoder_seq_limit = self.plas_decoder_top_k_left * self.plas_block_size
|
|
self.check_legality_parameters()
|
|
|
|
def check_legality_parameters(
|
|
self,
|
|
) -> None:
|
|
if self.plas_encoder_top_k_left is not None:
|
|
assert self.plas_encoder_top_k_left > 0, "plas_encoder_top_k_left must large than 0"
|
|
|
|
if self.plas_encoder_top_k_right is not None:
|
|
assert self.plas_encoder_top_k_right > 0, "plas_encoder_top_k_right must large than 0"
|
|
assert (
|
|
self.plas_encoder_top_k_right >= self.plas_encoder_top_k_left
|
|
), "plas_encoder_top_k_right must large than plas_encoder_top_k_left"
|
|
|
|
if self.plas_decoder_top_k_left is not None:
|
|
assert self.plas_decoder_top_k_left > 0, "plas_decoder_top_k_left must large than 0"
|
|
|
|
if self.plas_decoder_top_k_right is not None:
|
|
assert self.plas_decoder_top_k_right > 0, "plas_decoder_top_k_right must large than 0"
|
|
assert (
|
|
self.plas_decoder_top_k_right >= self.plas_decoder_top_k_left
|
|
), "plas_decoder_top_k_right must large than plas_decoder_top_k_left"
|
|
|
|
if self.plas_use_encoder_seq_limit is not None and self.plas_encoder_top_k_left is not None:
|
|
assert self.plas_use_encoder_seq_limit >= self.plas_encoder_top_k_left * self.plas_block_size
|
|
if self.plas_use_decoder_seq_limit is not None and self.plas_decoder_top_k_left is not None:
|
|
assert self.plas_use_decoder_seq_limit >= self.plas_decoder_top_k_left * self.plas_block_size
|
|
|
|
def to_json_string(self):
|
|
"""
|
|
Convert plas_attention_config to json string.
|
|
"""
|
|
return json.dumps({key: value for key, value in self.__dict__.items() if value is not None})
|
|
|
|
|
|
class EarlyStopConfig:
|
|
def __init__(
|
|
self,
|
|
args,
|
|
):
|
|
"""
|
|
Early Stop Configuration class.
|
|
|
|
Attributes:
|
|
window_size: size of the window
|
|
threshold: trigger early stop when the ratio of probs exceeds the threshold
|
|
"""
|
|
"""enable to use early stop"""
|
|
self.enable_early_stop: bool = False
|
|
"""strategy for early stop, the strategy lists are ['repetition']"""
|
|
self.strategy: str = "repetition"
|
|
""" the maximum length of verify window for early stop """
|
|
self.window_size: int = 3000
|
|
""" the probs threshold for early stop """
|
|
self.threshold: float = 0.99
|
|
|
|
if args is not None:
|
|
for key, value in args.items():
|
|
if hasattr(self, key):
|
|
setattr(self, key, value)
|
|
self.check_legality_parameters()
|
|
|
|
def to_json_string(self):
|
|
"""
|
|
Convert early_stop_config to json string.
|
|
"""
|
|
return json.dumps({key: value for key, value in self.__dict__.items()})
|
|
|
|
def __str__(self) -> str:
|
|
return self.to_json_string()
|
|
|
|
def check_legality_parameters(
|
|
self,
|
|
) -> None:
|
|
"""Check the legality of parameters passed in from the command line"""
|
|
if self.enable_early_stop is not None:
|
|
assert isinstance(
|
|
self.enable_early_stop, bool
|
|
), "In early stop config, type of enable_early_stop must is bool."
|
|
if self.window_size is not None:
|
|
assert isinstance(self.window_size, int), "In early stop config, type of window_size must be int."
|
|
assert self.window_size > 0, "window_size must large than 0"
|
|
if self.threshold is not None:
|
|
assert isinstance(self.threshold, float), "In early stop config, type of threshold must be float."
|
|
assert self.threshold >= 0 and self.threshold <= 1, "threshold must between 0 and 1"
|
|
|
|
def update_enable_early_stop(self, argument: bool):
|
|
"""
|
|
Unified user specifies the enable_early_stop parameter through two methods,
|
|
'--enable-early-stop' and '--early-stop-config'
|
|
"""
|
|
if self.enable_early_stop is None:
|
|
# User only set '--enable-early-stop'
|
|
self.enable_early_stop = argument
|
|
else:
|
|
# User both set '--enable-early-stop' and '--early-stop-config'
|
|
if self.enable_early_stop is False and argument is True:
|
|
raise ValueError(
|
|
"Invalid parameter: Cannot set ---enable-early-stop and --early-stop-config '{\"enable_early_stop\":false}' simultaneously."
|
|
)
|
|
argument = self.enable_early_stop
|
|
|
|
|
|
class LoadChoices(str, Enum):
|
|
"""LoadChoices"""
|
|
|
|
DEFAULT = "default"
|
|
DEFAULT_V1 = "default_v1"
|
|
|
|
|
|
class LoadConfig:
|
|
"""
|
|
Configuration for dynamic weight loading strategies
|
|
|
|
Attributes:
|
|
dynamic_load_weight: Whether to enable dynamic weight loading
|
|
load_strategy: Specifies the weight loading method when enabled:
|
|
- 'ipc': Real-time IPC streaming with automatic resharding
|
|
- 'ipc_snapshot': Load from disk snapshot of IPC weights
|
|
- 'meta': Only model meta messages
|
|
- None: No dynamic loading
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
args,
|
|
):
|
|
self.load_choices: Union[str, LoadChoices] = LoadChoices.DEFAULT.value
|
|
self.use_fastsafetensor = int(envs.FD_USE_FASTSAFETENSOR) == 1
|
|
self.dynamic_load_weight: bool = False
|
|
self.load_strategy: Optional[Literal["ipc", "ipc_snapshot", "meta", "normal"]] = "normal"
|
|
for key, value in args.items():
|
|
if hasattr(self, key):
|
|
setattr(self, key, value)
|
|
|
|
|
|
class PoolerConfig:
|
|
"""Controls the behavior of output pooling in pooling models."""
|
|
|
|
pooling_type: Optional[str] = None
|
|
"""
|
|
The pooling method of the pooling model.
|
|
"""
|
|
# for embeddings models
|
|
normalize: Optional[bool] = None
|
|
"""
|
|
Whether to normalize the embeddings outputs. Defaults to True.
|
|
"""
|
|
dimensions: Optional[int] = None
|
|
"""
|
|
Reduce the dimensions of embeddings if model
|
|
support matryoshka representation. Defaults to None.
|
|
"""
|
|
enable_chunked_processing: Optional[bool] = None
|
|
"""
|
|
Whether to enable chunked processing for long inputs that exceed the model's
|
|
maximum position embeddings. When enabled, long inputs will be split into
|
|
chunks, processed separately, and then aggregated using weighted averaging.
|
|
This allows embedding models to handle arbitrarily long text without CUDA
|
|
errors. Defaults to False.
|
|
"""
|
|
max_embed_len: Optional[int] = None
|
|
"""
|
|
Maximum input length allowed for embedding generation. When set, allows
|
|
inputs longer than max_embed_len to be accepted for embedding models.
|
|
When an input exceeds max_embed_len, it will be handled according to
|
|
the original max_model_len validation logic.
|
|
Defaults to None (i.e. set to max_model_len).
|
|
"""
|
|
|
|
|
|
class LoRAConfig:
|
|
"""LoRA Config"""
|
|
|
|
pass
|
|
|
|
|
|
class CacheConfig:
|
|
"""
|
|
Configuration for the KV cache.
|
|
|
|
Attributes:
|
|
block_size (int): Size of a cache block in number of tokens.
|
|
gpu_memory_utilization (float): Fraction of GPU memory to use for model execution.
|
|
cache_dtype (str): Data type for kv cache storage. Default is 'bfloat16'.
|
|
num_gpu_blocks_override (Optional[int]): Number of GPU blocks to use.
|
|
Overrides profiled num_gpu_blocks if provided.
|
|
kv_cache_ratio (float): Ratio for calculating the maximum block number.
|
|
enc_dec_block_num (int): Number of encoder-decoder blocks.
|
|
prealloc_dec_block_slot_num_threshold (int): Number of token slot threadshold to allocate next blocks for decoding.
|
|
enable_prefix_caching (bool): Flag to enable prefix caching.
|
|
"""
|
|
|
|
def __init__(self, args):
|
|
"""
|
|
Initialize the CacheConfig class.
|
|
|
|
Args:
|
|
block_size (int): Size of a cache block in number of tokens.
|
|
gpu_memory_utilization (float): Fraction of GPU memory to use.
|
|
cache_dtype (str): Data type for cache storage. Default is 'bfloat16'.
|
|
num_gpu_blocks_override (Optional[int]): Override for number of GPU blocks.
|
|
num_cpu_blocks (Optional[int]): Number of CPU blocks.
|
|
kv_cache_ratio (float): Ratio for max block calculation.
|
|
enc_dec_block_num (int): Number of encoder-decoder blocks.
|
|
prealloc_dec_block_slot_num_threshold (int): Number of token slot threadshold to allocate next blocks for decoding, used when ENABLE_V1_KVCACHE_SCHEDULER=1.
|
|
enable_prefix_caching (bool): Enable prefix caching.
|
|
"""
|
|
self.block_size = 64
|
|
self.gpu_memory_utilization = 0.9
|
|
self.num_gpu_blocks_override = None
|
|
if envs.ENABLE_V1_KVCACHE_SCHEDULER:
|
|
self.kv_cache_ratio = 1.0
|
|
else:
|
|
self.kv_cache_ratio = 0.75
|
|
self.enc_dec_block_num = 0 if current_platform.is_maca() else envs.FD_ENC_DEC_BLOCK_NUM
|
|
self.prealloc_dec_block_slot_num_threshold = 12
|
|
self.cache_dtype = "bfloat16"
|
|
self.model_cfg = None
|
|
self.enable_chunked_prefill = False
|
|
self.rdma_comm_ports = None
|
|
self.cache_transfer_protocol = None
|
|
self.pd_comm_port = None
|
|
self.enable_prefix_caching = False
|
|
self.enable_ssd_cache = False
|
|
self.cache_queue_port = None
|
|
self.swap_space = None
|
|
for key, value in args.items():
|
|
if hasattr(self, key):
|
|
setattr(self, key, value)
|
|
|
|
if self.rdma_comm_ports is not None and isinstance(self.rdma_comm_ports, str):
|
|
self.rdma_comm_ports = self.rdma_comm_ports.split(",")
|
|
|
|
if self.pd_comm_port is not None and isinstance(self.pd_comm_port, str):
|
|
self.pd_comm_port = [int(port) for port in self.pd_comm_port.split(",")]
|
|
|
|
if self.swap_space is None:
|
|
self.enable_hierarchical_cache = False
|
|
else:
|
|
self.enable_hierarchical_cache = True
|
|
|
|
if self.model_cfg is not None:
|
|
if self.model_cfg.quantization_config is not None:
|
|
self.cache_dtype = self.model_cfg.quantization_config.get("kv_cache_quant_type", self.cache_dtype)
|
|
if (
|
|
hasattr(self.model_cfg, "num_key_value_heads")
|
|
and hasattr(self.model_cfg, "num_key_value_heads")
|
|
and self.model_cfg.num_key_value_heads is not None
|
|
and int(self.model_cfg.num_key_value_heads) > 0
|
|
):
|
|
kv_num_head = int(self.model_cfg.num_key_value_heads)
|
|
else:
|
|
kv_num_head = self.model_cfg.num_attention_heads
|
|
self.model_cfg.kv_num_head = kv_num_head
|
|
# TODO check name
|
|
if "int4" in self.cache_dtype.lower() or "float4" in self.cache_dtype.lower():
|
|
byte_size = 0.5
|
|
self.cache_dtype = "uint8"
|
|
elif "int8" in self.cache_dtype.lower() or "float8" in self.cache_dtype.lower():
|
|
self.cache_dtype = "uint8"
|
|
byte_size = 1
|
|
else:
|
|
byte_size = 2
|
|
self.each_token_cache_space = int(
|
|
self.model_cfg.num_hidden_layers * kv_num_head * self.model_cfg.head_dim * byte_size
|
|
)
|
|
self.bytes_per_block = int(self.each_token_cache_space * self.block_size)
|
|
self.bytes_per_layer_per_block = int(
|
|
self.block_size
|
|
* self.model_cfg.kv_num_head
|
|
* self.model_cfg.head_dim
|
|
// args["tensor_parallel_size"]
|
|
* byte_size
|
|
)
|
|
|
|
if self.swap_space is None:
|
|
self.num_cpu_blocks = 0
|
|
else:
|
|
self.num_cpu_blocks = int(self.swap_space * 1024**3 / self.bytes_per_block)
|
|
self._verify_args()
|
|
|
|
def metrics_info(self):
|
|
"""Convert cache_config to dict(key: str, value: str) for prometheus metrics info."""
|
|
return {key: str(value) for key, value in self.__dict__.items()}
|
|
|
|
def _verify_args(self):
|
|
if self.gpu_memory_utilization > 1.0:
|
|
raise ValueError("GPU memory utilization must be less than 1.0. Got " f"{self.gpu_memory_utilization}.")
|
|
if self.kv_cache_ratio > 1.0:
|
|
raise ValueError("KV cache ratio must be less than 1.0. Got " f"{self.kv_cache_ratio}.")
|
|
|
|
def postprocess(self, num_total_tokens, number_of_tasks):
|
|
"""
|
|
calculate block num
|
|
"""
|
|
self.dec_token_num = self.enc_dec_block_num * self.block_size
|
|
if self.num_gpu_blocks_override is not None:
|
|
self.total_block_num = self.num_gpu_blocks_override
|
|
if envs.ENABLE_V1_KVCACHE_SCHEDULER:
|
|
self.prefill_kvcache_block_num = self.total_block_num
|
|
else:
|
|
self.prefill_kvcache_block_num = int(self.total_block_num * self.kv_cache_ratio)
|
|
else:
|
|
length = num_total_tokens // number_of_tasks
|
|
block_num = (length + self.block_size - 1 + self.dec_token_num) // self.block_size
|
|
self.total_block_num = block_num * number_of_tasks
|
|
self.prefill_kvcache_block_num = self.total_block_num
|
|
logger.info(f"Doing profile, the total_block_num:{self.total_block_num}")
|
|
|
|
def reset(self, num_gpu_blocks):
|
|
"""
|
|
reset gpu block number
|
|
"""
|
|
self.total_block_num = num_gpu_blocks
|
|
if envs.ENABLE_V1_KVCACHE_SCHEDULER:
|
|
self.prefill_kvcache_block_num = self.total_block_num
|
|
else:
|
|
self.prefill_kvcache_block_num = int(self.total_block_num * self.kv_cache_ratio)
|
|
logger.info(
|
|
f"Reset block num, the total_block_num:{self.total_block_num},"
|
|
f" prefill_kvcache_block_num:{self.prefill_kvcache_block_num}"
|
|
)
|
|
|
|
def print(self):
|
|
"""
|
|
print all config
|
|
|
|
"""
|
|
logger.info("Cache Configuration Information :")
|
|
for k, v in self.__dict__.items():
|
|
logger.info("{:<20}:{:<6}{}".format(k, "", v))
|
|
logger.info("=============================================================")
|
|
|
|
|
|
class DecodingConfig:
|
|
"""
|
|
Configuration for decoding
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
args,
|
|
):
|
|
self.pad_token_id = None
|
|
for key, value in args.items():
|
|
if hasattr(self, key):
|
|
setattr(self, key, value)
|
|
|
|
|
|
class CommitConfig:
|
|
"""
|
|
Configuration for tracking version information from version.txt
|
|
|
|
Attributes:
|
|
fastdeploy_commit: Full FastDeploy git commit hash
|
|
paddle_version: PaddlePaddle version string
|
|
paddle_commit: PaddlePaddle git commit hash
|
|
cuda_version: CUDA version string
|
|
compiler_version: CXX compiler version string
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
):
|
|
self.fastdeploy_commit: str = ""
|
|
self.paddle_version: str = ""
|
|
self.paddle_commit: str = ""
|
|
self.cuda_version: str = ""
|
|
self.compiler_version: str = ""
|
|
|
|
self._load_from_version_file()
|
|
|
|
def _load_from_version_file(self, file_path: str = None):
|
|
"""Internal method to load version info from file"""
|
|
if file_path is None:
|
|
file_path = os.path.join(fastdeploy.__path__[0], "version.txt")
|
|
try:
|
|
with open(file_path, "r") as f:
|
|
for line in f:
|
|
line = line.strip()
|
|
if line.startswith("fastdeploy GIT COMMIT ID:"):
|
|
self.fastdeploy_commit = line.split(":")[1].strip()
|
|
elif line.startswith("Paddle version:"):
|
|
self.paddle_version = line.split(":")[1].strip()
|
|
elif line.startswith("Paddle GIT COMMIT ID:"):
|
|
self.paddle_commit = line.split(":")[1].strip()
|
|
elif line.startswith("CUDA version:"):
|
|
self.cuda_version = line.split(":")[1].strip()
|
|
elif line.startswith("CXX compiler version:"):
|
|
self.compiler_version = line.split(":")[1].strip()
|
|
except FileNotFoundError:
|
|
logger.info(f"Warning: Version file not found at {file_path}")
|
|
except Exception as e:
|
|
logger.info(f"Warning: Could not read version file - {e!s}")
|
|
|
|
def print(self):
|
|
"""
|
|
print all config
|
|
|
|
"""
|
|
logger.info("Fasedeploy Commit Information :")
|
|
for k, v in self.__dict__.items():
|
|
logger.info("{:<20}:{:<6}{}".format(k, "", v))
|
|
logger.info("=============================================================")
|
|
|
|
|
|
class FDConfig:
|
|
"""
|
|
The configuration class which contains all fastdeploy-related configuration. This
|
|
simplifies passing around the distinct configurations in the codebase.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
model_config: ModelConfig = None,
|
|
cache_config: CacheConfig = None,
|
|
parallel_config: ParallelConfig = None,
|
|
load_config: LoadConfig = None,
|
|
commit_config: CommitConfig = CommitConfig(),
|
|
scheduler_config: SchedulerConfig = None,
|
|
device_config: DeviceConfig = None,
|
|
decoding_config: DecodingConfig = None,
|
|
quant_config: QuantConfigBase = None,
|
|
graph_opt_config: GraphOptimizationConfig = None,
|
|
plas_attention_config: PlasAttentionConfig = None,
|
|
speculative_config: SpeculativeConfig = None,
|
|
tokenizer: str = None,
|
|
max_model_len: int = 8192,
|
|
ips: str = None,
|
|
use_warmup: bool = False,
|
|
limit_mm_per_prompt: Optional[Dict[str, Any]] = None,
|
|
mm_processor_kwargs: Optional[Dict[str, Any]] = None,
|
|
innode_prefill_ports: Optional[List[int]] = None,
|
|
max_num_partial_prefills: int = 1,
|
|
max_long_partial_prefills: int = 1,
|
|
long_prefill_token_threshold: int = 0,
|
|
reasoning_parser: str = None,
|
|
guided_decoding_backend: Optional[str] = None,
|
|
disable_any_whitespace: bool = False,
|
|
early_stop_config: Optional[Dict[str, Any]] = None,
|
|
tool_parser: str = None,
|
|
test_mode=False,
|
|
):
|
|
self.model_config: ModelConfig = model_config # type: ignore
|
|
self.cache_config: CacheConfig = cache_config # type: ignore
|
|
self.scheduler_config: SchedulerConfig = scheduler_config # type: ignore
|
|
self.parallel_config = parallel_config # type: ignore
|
|
self.speculative_config: SpeculativeConfig = speculative_config
|
|
self.device_config: DeviceConfig = device_config # type: ignore
|
|
self.load_config: LoadConfig = load_config
|
|
self.quant_config: Optional[QuantConfigBase] = quant_config
|
|
self.graph_opt_config: Optional[GraphOptimizationConfig] = graph_opt_config
|
|
self.early_stop_config: Optional[EarlyStopConfig] = early_stop_config
|
|
self.decoding_config: DecodingConfig = decoding_config # type: ignore
|
|
self.cache_config: CacheConfig = cache_config # type: ignore
|
|
self.plas_attention_config: Optional[PlasAttentionConfig] = plas_attention_config
|
|
# Initialize cuda graph capture list
|
|
if self.graph_opt_config.cudagraph_capture_sizes is None:
|
|
self.graph_opt_config._set_cudagraph_sizes(max_num_seqs=self.scheduler_config.max_num_seqs)
|
|
|
|
if self.graph_opt_config.cudagraph_only_prefill:
|
|
self.graph_opt_config.init_with_cudagrpah_size(max_capture_size=512)
|
|
else:
|
|
self.graph_opt_config.init_with_cudagrpah_size(max_capture_size=self.scheduler_config.max_num_seqs)
|
|
|
|
# TODO(wangmingkai02): change graph_opt_level=2 when using static mode with cinn
|
|
if self.graph_opt_config.graph_opt_level == 2:
|
|
self.graph_opt_config.graph_opt_level = 1
|
|
|
|
self.tokenizer = tokenizer
|
|
self.ips = ips
|
|
self.tool_parser = tool_parser
|
|
|
|
if self.ips is None:
|
|
self.master_ip = "0.0.0.0"
|
|
elif isinstance(self.ips, str):
|
|
self.ips = self.ips.split(",")
|
|
|
|
self.host_ip = get_host_ip()
|
|
|
|
if self.ips is None:
|
|
self.nnode = 1
|
|
self.node_rank = 0
|
|
else:
|
|
self.nnode = len(self.ips)
|
|
|
|
for idx, ip in enumerate(self.ips):
|
|
if ip == self.host_ip:
|
|
self.node_rank = idx
|
|
|
|
self.max_model_len = max_model_len
|
|
self.limit_mm_per_prompt = limit_mm_per_prompt
|
|
self.mm_processor_kwargs = mm_processor_kwargs
|
|
self.use_warmup = use_warmup
|
|
self.innode_prefill_ports = innode_prefill_ports
|
|
self.max_num_partial_prefills = max_num_partial_prefills
|
|
self.max_long_partial_prefills = max_long_partial_prefills
|
|
self.long_prefill_token_threshold = long_prefill_token_threshold
|
|
self.reasoning_parser = reasoning_parser
|
|
self.guided_decoding_backend = guided_decoding_backend
|
|
self.disable_any_whitespace = disable_any_whitespace
|
|
self._str_to_list("innode_prefill_ports", int)
|
|
|
|
if envs.FD_FOR_TORCH_MODEL_FORMAT:
|
|
self.model_config.model_format = "torch"
|
|
|
|
# TODO
|
|
self.max_prefill_batch = int(os.getenv("MAX_PREFILL_NUM", "3"))
|
|
if current_platform.is_xpu():
|
|
self.max_prefill_batch = 1
|
|
if self.model_config is not None and self.model_config.enable_mm:
|
|
self.max_prefill_batch = 1 # TODO:当前多模prefill阶段只支持并行度为1,待优化
|
|
|
|
num_ranks = self.parallel_config.tensor_parallel_size * self.parallel_config.data_parallel_size
|
|
self.max_chips_per_node = 16 if current_platform.is_iluvatar() else 8
|
|
if num_ranks > self.max_chips_per_node and self.load_config.load_strategy != "meta":
|
|
self.worker_num_per_node = self.max_chips_per_node
|
|
nnode = ceil_div(num_ranks, self.worker_num_per_node)
|
|
assert nnode == self.nnode, f"nnode: {nnode}, but got {self.nnode}"
|
|
else:
|
|
self.worker_num_per_node = num_ranks
|
|
|
|
self.device_ids = ",".join([str(i) for i in range(self.worker_num_per_node)])
|
|
self.device_ids = os.getenv("CUDA_VISIBLE_DEVICES", self.device_ids)
|
|
if current_platform.is_xpu():
|
|
self.device_ids = os.getenv("XPU_VISIBLE_DEVICES", self.device_ids)
|
|
|
|
self.read_from_config()
|
|
self.postprocess()
|
|
if test_mode:
|
|
return
|
|
self.check()
|
|
self.print()
|
|
|
|
def postprocess(self):
|
|
"""
|
|
calculate some parameters
|
|
"""
|
|
self.local_device_ids = self.device_ids.split(",")[: self.parallel_config.tensor_parallel_size]
|
|
|
|
if self.parallel_config.tensor_parallel_size <= self.worker_num_per_node:
|
|
self.is_master = True
|
|
self.master_ip = "0.0.0.0"
|
|
else:
|
|
self.is_master = False
|
|
self.master_ip = self.ips[0]
|
|
|
|
self.paddle_commit_id = paddle.version.commit
|
|
|
|
if self.scheduler_config.max_num_batched_tokens is None:
|
|
if int(envs.ENABLE_V1_KVCACHE_SCHEDULER):
|
|
if paddle.is_compiled_with_xpu():
|
|
self.scheduler_config.max_num_batched_tokens = self.max_model_len
|
|
else:
|
|
self.scheduler_config.max_num_batched_tokens = 8192 # if set to max_model_len, it's easy to be OOM
|
|
else:
|
|
if self.cache_config.enable_chunked_prefill:
|
|
self.scheduler_config.max_num_batched_tokens = 2048
|
|
else:
|
|
self.scheduler_config.max_num_batched_tokens = self.max_model_len
|
|
|
|
if self.long_prefill_token_threshold == 0:
|
|
self.long_prefill_token_threshold = int(self.max_model_len * 0.04)
|
|
|
|
self.cache_config.postprocess(self.scheduler_config.max_num_batched_tokens, self.scheduler_config.max_num_seqs)
|
|
self.cache_config.max_block_num_per_seq = int(self.max_model_len // self.cache_config.block_size)
|
|
|
|
if self.guided_decoding_backend == "auto":
|
|
if current_platform.is_xpu() or self.speculative_config.method is not None:
|
|
logger.warning("Speculative Decoding and XPU currently do not support Guided decoding, set off.")
|
|
self.guided_decoding_backend = "off"
|
|
else:
|
|
self.guided_decoding_backend = "xgrammar"
|
|
|
|
if self.scheduler_config.splitwise_role == "mixed":
|
|
self.model_config.moe_phase = MoEPhase(phase="prefill")
|
|
elif self.scheduler_config.splitwise_role == "prefill":
|
|
self.model_config.moe_phase = MoEPhase(phase="prefill")
|
|
elif self.scheduler_config.splitwise_role == "decode":
|
|
self.model_config.moe_phase = MoEPhase(phase="decode")
|
|
else:
|
|
raise NotImplementedError
|
|
|
|
def check(self):
|
|
"""
|
|
check the legality of config
|
|
"""
|
|
assert self.scheduler_config.max_num_seqs <= 256, (
|
|
"The parameter `max_num_seqs` is not allowed to exceed 256, "
|
|
f"but now it's {self.scheduler_config.max_num_seqs}."
|
|
)
|
|
assert self.nnode >= 1, f"nnode: {self.nnode} should no less than 1"
|
|
assert self.max_model_len >= 16, f"max_model_len: {self.max_model_len} should be larger than 16"
|
|
assert (
|
|
self.scheduler_config.max_num_seqs >= 1
|
|
), f"max_num_seqs: {self.scheduler_config.max_num_seqs} should be larger than 1"
|
|
assert self.scheduler_config.max_num_batched_tokens >= self.scheduler_config.max_num_seqs, (
|
|
f"max_num_batched_tokens: {self.scheduler_config.max_num_batched_tokens} "
|
|
f"should be larger than or equal to max_num_seqs: {self.scheduler_config.max_num_seqs}"
|
|
)
|
|
assert (
|
|
self.scheduler_config.max_num_batched_tokens <= self.max_model_len * self.scheduler_config.max_num_seqs
|
|
), (
|
|
f"max_num_batched_tokens: {self.scheduler_config.max_num_batched_tokens} should be larger"
|
|
f"than or equal to max_num_seqs: {self.scheduler_config.max_num_seqs} * max_model_len: {self.max_model_len}"
|
|
)
|
|
assert (
|
|
self.max_num_partial_prefills >= 1
|
|
), f"max_num_partial_prefills: {self.max_num_partial_prefills} should be larger than or equal to 1"
|
|
|
|
assert (
|
|
self.max_long_partial_prefills >= 1
|
|
), f"max_long_partial_prefills: {self.max_long_partial_prefills} should be larger than or equal to 1"
|
|
assert self.max_long_partial_prefills <= self.max_num_partial_prefills, (
|
|
f"max_long_partial_prefills: {self.max_long_partial_prefills} should "
|
|
f"be less than or equal to max_num_partial_prefills: {self.max_num_partial_prefills}"
|
|
)
|
|
assert self.scheduler_config.splitwise_role in ["mixed", "prefill", "decode"]
|
|
# TODO(@wufeisheng): TP and EP need to be supported simultaneously.
|
|
assert (self.parallel_config.tensor_parallel_size == 1 and self.parallel_config.expert_parallel_size >= 1) or (
|
|
self.parallel_config.tensor_parallel_size >= 1 and self.parallel_config.expert_parallel_size == 1
|
|
), "TP and EP cannot be enabled at the same time"
|
|
|
|
if not self.cache_config.enable_chunked_prefill:
|
|
if not envs.ENABLE_V1_KVCACHE_SCHEDULER:
|
|
assert self.scheduler_config.max_num_batched_tokens >= self.max_model_len, (
|
|
f"max_num_batched_tokens: {self.scheduler_config.max_num_batched_tokens} "
|
|
f"should be larger than or equal to max_model_len: {self.max_model_len}"
|
|
)
|
|
else:
|
|
assert self.scheduler_config.max_num_batched_tokens >= self.cache_config.block_size, (
|
|
f"max_num_batched_tokens: {self.scheduler_config.max_num_batched_tokens} "
|
|
f"should be larger than or equal to block_size: {self.cache_config.block_size}"
|
|
)
|
|
|
|
if self.max_num_partial_prefills > 1:
|
|
assert (
|
|
self.cache_config.enable_chunked_prefill is True
|
|
), "Chunked prefill must be enabled to set max_num_partial_prefills > 1"
|
|
assert self.long_prefill_token_threshold < self.max_model_len, (
|
|
f"long_prefill_token_threshold: {self.long_prefill_token_threshold} should be less than"
|
|
f" max_model_len: {self.max_model_len}"
|
|
)
|
|
|
|
if self.guided_decoding_backend is not None:
|
|
assert self.guided_decoding_backend in [
|
|
"xgrammar",
|
|
"XGrammar",
|
|
"auto",
|
|
"off",
|
|
], f"Only support xgrammar、auto guided decoding backend, but got {self.guided_decoding_backend}."
|
|
|
|
if self.guided_decoding_backend != "off":
|
|
# TODO: speculative decoding support guided_decoding
|
|
assert (
|
|
self.speculative_config.method is None
|
|
), "speculative decoding currently do not support guided_decoding"
|
|
|
|
# TODO: xpu support guided_decoding
|
|
assert not current_platform.is_xpu(), "XPU currently do not support guided_decoding"
|
|
|
|
try:
|
|
import xgrammar # noqa
|
|
except Exception as e:
|
|
raise Exception(
|
|
f"import XGrammar failed, please install XGrammar use `pip install xgrammar==0.1.19`. \n\t {e}"
|
|
)
|
|
|
|
if self.scheduler_config is not None:
|
|
self.scheduler_config.check()
|
|
|
|
if int(envs.ENABLE_V1_KVCACHE_SCHEDULER) == 1:
|
|
assert (
|
|
int(envs.FD_DISABLED_RECOVER) == 0
|
|
), "FD_DISABLED_RECOVER is not supported while ENABLE_V1_KVCACHE_SCHEDULER is turned on."
|
|
|
|
def print(self):
|
|
"""
|
|
print all config
|
|
"""
|
|
logger.info("=================== Configuration Information ===============")
|
|
for k, v in self.__dict__.items():
|
|
if k == "generation_config" and v is not None:
|
|
for gck, gcv in v.to_dict().items():
|
|
logger.info("{:<20}:{:<6}{}".format(gck, "", gcv))
|
|
elif (
|
|
k == "cache_config"
|
|
or k == "model_config"
|
|
or k == "scheduler_config"
|
|
or k == "parallel_config"
|
|
or k == "commit_config"
|
|
):
|
|
if v is not None:
|
|
v.print()
|
|
else:
|
|
logger.info("{:<20}:{:<6}{}".format(k, "", v))
|
|
logger.info("=============================================================")
|
|
|
|
def init_cache_info(self):
|
|
"""
|
|
initialize cache info
|
|
"""
|
|
disaggregate_info = {}
|
|
if self.scheduler_config.splitwise_role != "mixed":
|
|
disaggregate_info["role"] = self.scheduler_config.splitwise_role
|
|
disaggregate_info["cache_info"] = dict()
|
|
current_protocol = self.cache_config.cache_transfer_protocol.split(",")
|
|
disaggregate_info["transfer_protocol"] = current_protocol
|
|
for protocol in current_protocol:
|
|
if protocol == "ipc":
|
|
disaggregate_info["cache_info"][protocol] = {
|
|
"ip": self.host_ip,
|
|
"port": self.parallel_config.engine_worker_queue_port[
|
|
self.parallel_config.local_data_parallel_id
|
|
],
|
|
"device_ids": self.local_device_ids,
|
|
}
|
|
elif protocol == "rdma":
|
|
disaggregate_info["cache_info"][protocol] = {
|
|
"ip": self.host_ip,
|
|
"port": self.cache_config.pd_comm_port[0],
|
|
"rdma_port": self.cache_config.rdma_comm_ports,
|
|
}
|
|
self.disaggregate_info = disaggregate_info
|
|
logger.info(f"disaggregate_info: {self.disaggregate_info}")
|
|
|
|
def read_from_config(self):
|
|
"""
|
|
reset model config from json file
|
|
"""
|
|
|
|
def reset_value(cls, value_name, key):
|
|
if hasattr(cls, key):
|
|
value = getattr(cls, key)
|
|
setattr(cls, value_name, value)
|
|
logger.info(f"Reset parameter {value_name} = {value} from configuration.")
|
|
|
|
reset_value(self.cache_config, "block_size", "infer_model_block_size")
|
|
reset_value(
|
|
self.model_config,
|
|
"return_full_hidden_states",
|
|
"return_full_hidden_states",
|
|
)
|
|
reset_value(self.cache_config, "cache_dtype", "infer_model_dtype")
|
|
|
|
def _check_master(self):
|
|
return self.is_master
|
|
|
|
def _str_to_list(self, attr_name, default_type):
|
|
if hasattr(self, attr_name):
|
|
val = getattr(self, attr_name)
|
|
if val is None:
|
|
return
|
|
if type(val) is str:
|
|
setattr(self, attr_name, [default_type(i) for i in val.split(",")])
|
|
else:
|
|
setattr(self, attr_name, [default_type(i) for i in val])
|
|
|
|
def __str__(self) -> str:
|
|
return json.dumps(self.__dict__, indent=4)
|