Files
FastDeploy/python/fastdeploy/vision/facedet/contrib/blazeface.py
CoolCola 42d14e7119 [Model] Support BlazeFace Model (#1172)
* fit yolov7face file path

* TODO:添加yolov7facePython接口Predict

* resolve yolov7face.py

* resolve yolov7face.py

* resolve yolov7face.py

* add yolov7face example readme file

* [Doc] fix yolov7face example readme file

* [Doc]fix yolov7face example readme file

* support BlazeFace

* add blazeface readme file

* fix review problem

* fix code style error

* fix review problem

* fix review problem

* fix head file problem

* fix review problem

* fix review problem

* fix readme file problem

* add English readme file

* fix English readme file
2023-02-06 14:24:12 +08:00

144 lines
5.1 KiB
Python

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
import logging
from .... import FastDeployModel, ModelFormat
from .... import c_lib_wrap as C
class BlazeFacePreprocessor:
def __init__(self):
"""Create a preprocessor for BlazeFace
"""
self._preprocessor = C.vision.facedet.BlazeFacePreprocessor()
def run(self, input_ims):
"""Preprocess input images for BlazeFace
:param: input_ims: (list of numpy.ndarray)The input image
:return: list of FDTensor
"""
return self._preprocessor.run(input_ims)
@property
def is_scale_(self):
"""
is_scale_ for preprocessing, the input image only can be zoom out, the maximum resize scale cannot exceed 1.0, default true
"""
return self._preprocessor.is_scale_
@is_scale_.setter
def is_scale_(self, value):
assert isinstance(
value,
bool), "The value to set `is_scale_` must be type of bool."
self._preprocessor.is_scale_ = value
class BlazeFacePostprocessor:
def __init__(self):
"""Create a postprocessor for BlazeFace
"""
self._postprocessor = C.vision.facedet.BlazeFacePostprocessor()
def run(self, runtime_results, ims_info):
"""Postprocess the runtime results for BlazeFace
:param: runtime_results: (list of FDTensor)The output FDTensor results from runtime
:param: ims_info: (list of dict)Record input_shape and output_shape
:return: list of DetectionResult(If the runtime_results is predict by batched samples, the length of this list equals to the batch size)
"""
return self._postprocessor.run(runtime_results, ims_info)
@property
def conf_threshold(self):
"""
confidence threshold for postprocessing, default is 0.5
"""
return self._postprocessor.conf_threshold
@property
def nms_threshold(self):
"""
nms threshold for postprocessing, default is 0.3
"""
return self._postprocessor.nms_threshold
@conf_threshold.setter
def conf_threshold(self, conf_threshold):
assert isinstance(conf_threshold, float),\
"The value to set `conf_threshold` must be type of float."
self._postprocessor.conf_threshold = conf_threshold
@nms_threshold.setter
def nms_threshold(self, nms_threshold):
assert isinstance(nms_threshold, float),\
"The value to set `nms_threshold` must be type of float."
self._postprocessor.nms_threshold = nms_threshold
class BlazeFace(FastDeployModel):
def __init__(self,
model_file,
params_file="",
config_file="",
runtime_option=None,
model_format=ModelFormat.PADDLE):
"""Load a BlazeFace model exported by BlazeFace.
:param model_file: (str)Path of model file, e.g ./Blazeface.onnx
:param params_file: (str)Path of parameters file, e.g yolox/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
"""
super(BlazeFace, self).__init__(runtime_option)
self._model = C.vision.facedet.BlazeFace(
model_file, params_file, config_file, self._runtime_option, model_format)
assert self.initialized, "BlazeFace initialize failed."
def predict(self, input_image):
"""Detect the location and key points of human faces from an input image
:param input_image: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
:return: FaceDetectionResult
"""
return self._model.predict(input_image)
def batch_predict(self, images):
"""Classify a batch of input image
:param im: (list of numpy.ndarray) The input image list, each element is a 3-D array with layout HWC, BGR format
:return list of FaceDetectionResult
"""
return self._model.batch_predict(images)
@property
def preprocessor(self):
"""Get BlazefacePreprocessor object of the loaded model
:return BlazefacePreprocessor
"""
return self._model.preprocessor
@property
def postprocessor(self):
"""Get BlazefacePostprocessor object of the loaded model
:return BlazefacePostprocessor
"""
return self._model.postprocessor