mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-27 02:20:31 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			126 lines
		
	
	
		
			3.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			126 lines
		
	
	
		
			3.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| """
 | |
| # Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #     http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| """
 | |
| 
 | |
| from typing import Optional
 | |
| 
 | |
| import paddle
 | |
| 
 | |
| from fastdeploy.model_executor.layers.quantization.ops import (
 | |
|     cutlass_scaled_mm,
 | |
|     scaled_fp8_quant,
 | |
| )
 | |
| from fastdeploy.model_executor.layers.quantization.quant_base import (
 | |
|     QuantConfigBase,
 | |
|     QuantMethodBase,
 | |
| )
 | |
| 
 | |
| 
 | |
| class WFP8AFP8Config(QuantConfigBase):
 | |
|     """
 | |
|     Quantization config for weight and activation with FP8.
 | |
|     """
 | |
| 
 | |
|     def __init__(self, weight_scale_dict, act_scale_dict) -> None:
 | |
|         super().__init__()
 | |
|         self.weight_scale_dict = weight_scale_dict
 | |
|         self.act_scale_dict = act_scale_dict
 | |
|         self.quant_max_bound = 448
 | |
|         self.quant_min_bound = -448
 | |
|         self.quant_round_type = 1
 | |
| 
 | |
|     def name(self) -> str:
 | |
|         """ """
 | |
|         return "wfp8afp8"
 | |
| 
 | |
|     @classmethod
 | |
|     def from_config(cls, config: dict) -> "WFP8AFP8Config":
 | |
|         """ """
 | |
|         weight_scale_dict = config.get("weight_scale_dict", None)
 | |
|         act_scale_dict = config.get("act_scale_dict", None)
 | |
|         return cls(weight_scale_dict, act_scale_dict)
 | |
| 
 | |
|     def get_quant_method(self, layer) -> Optional[QuantMethodBase]:
 | |
|         """ """
 | |
|         return WFP8AFP8LinearMethod(self)
 | |
| 
 | |
| 
 | |
| class WFP8AFP8LinearMethod(QuantMethodBase):
 | |
|     """
 | |
|     Weight and activation quantization method for linear layer with FP8
 | |
|     """
 | |
| 
 | |
|     def __init__(
 | |
|         self,
 | |
|         quant_config: WFP8AFP8Config,
 | |
|     ) -> None:
 | |
|         super().__init__()
 | |
|         self.quant_config = quant_config
 | |
| 
 | |
|     def create_weights(self, layer, **extra_weight_attrs):
 | |
|         """ """
 | |
|         layer.weight_shape.reverse()
 | |
|         layer.weight_dtype = "float8_e4m3fn"
 | |
|         # TODO(YuanRisheng): set weight logic should be moved to process_loaded_weights func
 | |
|         self.skip_quant = False
 | |
|         layer.create_parameter(
 | |
|             shape=layer.weight_shape,
 | |
|             dtype=layer.weight_dtype,
 | |
|             is_bias=False,
 | |
|             default_initializer=paddle.nn.initializer.Constant(0),
 | |
|         )
 | |
|         layer.weight_scale = layer.create_parameter(
 | |
|             shape=[1],
 | |
|             dtype="float32",
 | |
|             is_bias=False,
 | |
|             default_initializer=paddle.nn.initializer.Constant(0),
 | |
|         )
 | |
| 
 | |
|     def process_loaded_weights(self, layer, weights) -> None:
 | |
|         """ """
 | |
|         if self.skip_quant:
 | |
|             weight_tensor = weights.cast(layer._dtype)
 | |
|             layer.weight.set_value(weight_tensor)
 | |
|             return
 | |
|         if weights.dtype != paddle.float8_e4m3fn:
 | |
|             self.use_per_token_if_dynamic = True
 | |
|         weight_tensor = weights.transpose([1, 0]).contiguous()
 | |
|         qweight, weight_scale = scaled_fp8_quant(
 | |
|             weight_tensor,
 | |
|             use_per_token_if_dynamic=False,
 | |
|         )
 | |
|         layer.weight.copy_(qweight, False)
 | |
|         layer.weight_scale.set_value(weight_scale)
 | |
| 
 | |
|     def apply(self, layer, x):
 | |
|         """ """
 | |
|         if self.skip_quant:
 | |
|             linear_out = paddle.matmul(x, layer.weight, False, True)
 | |
|             return linear_out
 | |
|         if self.use_per_token_if_dynamic:
 | |
|             out_type = x.dtype
 | |
|             a_q, a_scales = scaled_fp8_quant(x, use_per_token_if_dynamic=self.use_per_token_if_dynamic)
 | |
|             linear_out = cutlass_scaled_mm(
 | |
|                 a_q,
 | |
|                 layer.weight,
 | |
|                 a_scales,
 | |
|                 layer.weight_scale,
 | |
|                 out_type,
 | |
|                 layer.bias,
 | |
|             )
 | |
|         else:
 | |
|             raise NotImplementedError
 | |
|         return linear_out
 | 
