mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-27 02:20:31 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			193 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			193 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| """
 | |
| # Copyright (c) 2025  PaddlePaddle Authors. All Rights Reserved.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License"
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #     http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| """
 | |
| 
 | |
| from enum import Enum
 | |
| from typing import Optional
 | |
| 
 | |
| import paddle
 | |
| from paddle import nn
 | |
| 
 | |
| from fastdeploy.model_executor.layers.utils import get_tensor
 | |
| 
 | |
| from ..utils import create_and_set_parameter
 | |
| from .quant_base import QuantConfigBase, QuantMethodBase
 | |
| 
 | |
| 
 | |
| class KvCacheQuantzationTypes(str, Enum):
 | |
|     """
 | |
|     KvCacheQuantzationTypes
 | |
|     """
 | |
| 
 | |
|     INT8 = "int8"
 | |
|     FP8 = "float8_e4m3fn"
 | |
|     INT8_ZP = "int8_zp"
 | |
|     INT4_ZP = "int4_zp"
 | |
|     FP8_ZP = "float8_e4m3fn_zp"
 | |
| 
 | |
| 
 | |
| class KvCacheQuantConfig(QuantConfigBase):
 | |
|     """
 | |
|     quantization config for weight 4bits and activation fp8
 | |
|     """
 | |
| 
 | |
|     def __init__(self, kv_cache_quant_type: str, is_channel_wise: bool, has_zero_point: bool) -> None:
 | |
|         """
 | |
|         __init__
 | |
|         """
 | |
|         super().__init__()
 | |
|         self.kv_cache_quant_type = kv_cache_quant_type
 | |
|         self.is_channel_wise = is_channel_wise
 | |
|         self.has_zero_point = has_zero_point
 | |
| 
 | |
|         try:
 | |
|             self.quant_type = KvCacheQuantzationTypes(kv_cache_quant_type)
 | |
|         except ValueError:
 | |
|             raise ValueError(f"Invalid Kvcache type: {kv_cache_quant_type}")
 | |
| 
 | |
|         if "zp" in kv_cache_quant_type:
 | |
|             self.has_zero_point = True
 | |
| 
 | |
|         if self.quant_type == KvCacheQuantzationTypes.INT8 or self.quant_type == KvCacheQuantzationTypes.INT8_ZP:
 | |
|             self.max_bound = 127.0
 | |
|         elif self.quant_type == KvCacheQuantzationTypes.FP8 or self.quant_type == KvCacheQuantzationTypes.FP8_ZP:
 | |
|             self.max_bound = 448.0
 | |
|         elif self.quant_type == KvCacheQuantzationTypes.INT4_ZP:
 | |
|             self.max_bound = 7.0
 | |
|         else:
 | |
|             raise ValueError(f"Invalid Kvcache type: {kv_cache_quant_type}")
 | |
| 
 | |
|     def name(self) -> str:
 | |
|         """
 | |
|         get_name
 | |
|         """
 | |
|         return "kvcache"
 | |
| 
 | |
|     @classmethod
 | |
|     def from_config(
 | |
|         cls, kv_cache_quant_type: str, is_channel_wise: bool, has_zero_point: bool
 | |
|     ) -> "KvCacheQuantConfig":
 | |
|         """
 | |
|         from_config
 | |
|         """
 | |
|         return cls(kv_cache_quant_type, is_channel_wise, has_zero_point)
 | |
| 
 | |
|     def get_quant_method(self, layer) -> Optional[QuantMethodBase]:
 | |
|         """
 | |
|         get_quant_method
 | |
|         """
 | |
|         return KVCacheMethodBase(self)
 | |
| 
 | |
| 
 | |
| class KVCacheMethodBase(QuantMethodBase):
 | |
|     """
 | |
|     KVCacheMethodBase
 | |
|     """
 | |
| 
 | |
|     def __init__(
 | |
|         self,
 | |
|         quant_config: KvCacheQuantConfig,
 | |
|     ) -> None:
 | |
|         """
 | |
|         KVCacheMethodBase __init__
 | |
|         """
 | |
|         super().__init__()
 | |
|         self.cache_quant_config = quant_config
 | |
| 
 | |
|     def load_zp(self, layer: nn.Layer, state_dict):
 | |
|         """
 | |
|         load_zp
 | |
|         """
 | |
|         cache_k_zeropoint = get_tensor(state_dict.pop(self.cache_k_zp_name)).cast(paddle.get_default_dtype())
 | |
|         cache_v_zeropoint = get_tensor(state_dict.pop(self.cache_v_zp_name)).cast(paddle.get_default_dtype())
 | |
| 
 | |
|         create_and_set_parameter(layer, "cache_k_zp", cache_k_zeropoint)
 | |
|         create_and_set_parameter(layer, "cache_v_zp", cache_v_zeropoint)
 | |
| 
 | |
|     def load_scale(self, layer: nn.Layer, state_dict):
 | |
|         """
 | |
|         load_scale
 | |
|         """
 | |
| 
 | |
|         if self.cache_quant_config.is_channel_wise:
 | |
|             cache_k_scale_tensor = (
 | |
|                 get_tensor(state_dict.pop(self.cache_k_scale_name))
 | |
|                 .cast(paddle.get_default_dtype())
 | |
|                 .reshape_([-1, layer.head_dim])
 | |
|             )
 | |
|             cache_v_scale_tensor = (
 | |
|                 get_tensor(state_dict.pop(self.cache_v_scale_name))
 | |
|                 .cast(paddle.get_default_dtype())
 | |
|                 .reshape_([-1, layer.head_dim])
 | |
|             )
 | |
|         else:
 | |
|             cache_k_scale_tensor = (
 | |
|                 get_tensor(state_dict.pop(self.cache_k_scale_name)).cast(paddle.get_default_dtype()).reshape_([-1])
 | |
|             )
 | |
|             cache_v_scale_tensor = (
 | |
|                 get_tensor(state_dict.pop(self.cache_v_scale_name)).cast(paddle.get_default_dtype()).reshape_([-1])
 | |
|             )
 | |
| 
 | |
|         if self.cache_quant_config.has_zero_point:  # cache_int4_zp
 | |
|             cache_k_scale = 1.0 / cache_k_scale_tensor
 | |
|             cache_v_scale = 1.0 / cache_v_scale_tensor
 | |
|             cache_k_out_scale = cache_k_scale_tensor
 | |
|             cache_v_out_scale = cache_v_scale_tensor
 | |
|         else:
 | |
|             cache_k_scale = self.cache_quant_config.max_bound / cache_k_scale_tensor
 | |
|             cache_v_scale = self.cache_quant_config.max_bound / cache_v_scale_tensor
 | |
|             cache_k_out_scale = cache_k_scale_tensor / self.cache_quant_config.max_bound
 | |
|             cache_v_out_scale = cache_v_scale_tensor / self.cache_quant_config.max_bound
 | |
| 
 | |
|         create_and_set_parameter(layer, "cache_k_scale", cache_k_scale)
 | |
|         create_and_set_parameter(layer, "cache_v_scale", cache_v_scale)
 | |
|         create_and_set_parameter(layer, "cache_k_out_scale", cache_k_out_scale)
 | |
|         create_and_set_parameter(layer, "cache_v_out_scale", cache_v_out_scale)
 | |
| 
 | |
|     def create_weights(self, layer: nn.Layer, state_dict):
 | |
|         """
 | |
|         create_weights
 | |
|         """
 | |
|         self.prefix = layer.prefix
 | |
|         self.cache_k_scale_name = layer.prefix + ".cachek_matmul.activation_scale"
 | |
|         self.cache_v_scale_name = layer.prefix + ".cachev_matmul.activation_scale"
 | |
|         self.cache_k_zp_name = layer.prefix + ".cachek_matmul.activation_zero_point"
 | |
|         self.cache_v_zp_name = layer.prefix + ".cachev_matmul.activation_zero_point"
 | |
| 
 | |
|         if self.cache_quant_config.quant_type == KvCacheQuantzationTypes.INT8:
 | |
|             layer.cache_quant_type_str = "cache_int8"
 | |
|             layer.quant_max_bound = 127.0
 | |
|             layer.quant_min_bound = -127.0
 | |
|         elif self.cache_quant_config.quant_type == KvCacheQuantzationTypes.FP8:
 | |
|             layer.cache_quant_type_str = "cache_fp8"
 | |
|             layer.quant_max_bound = 448.0
 | |
|             layer.quant_min_bound = -448.0
 | |
|         elif self.cache_quant_config.quant_type == KvCacheQuantzationTypes.INT4_ZP:
 | |
|             layer.cache_quant_type_str = "cache_int4_zp"
 | |
|             layer.quant_max_bound = 7.0
 | |
|             layer.quant_min_bound = -7.0
 | |
|         else:
 | |
|             raise NotImplementedError(f"{self.cache_quant_config.quant_type} is not implemented")
 | |
| 
 | |
|         self.load_scale(layer, state_dict)
 | |
|         if self.cache_quant_config.has_zero_point:
 | |
|             self.load_zp(layer, state_dict)
 | |
| 
 | |
|     def apply(self, layer):
 | |
|         """
 | |
|         apply
 | |
|         """
 | |
|         raise RuntimeError(f"{self.__class__.__name__}.apply should not be called.")
 | 
