mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-27 02:20:31 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			139 lines
		
	
	
		
			4.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			139 lines
		
	
	
		
			4.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| """
 | |
| # Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #     http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| """
 | |
| 
 | |
| from typing import Optional
 | |
| 
 | |
| import paddle
 | |
| 
 | |
| import fastdeploy
 | |
| from fastdeploy import envs
 | |
| from fastdeploy.model_executor.layers.moe import FusedMoE
 | |
| 
 | |
| from ..utils import get_tensor, per_block_cast_to_fp8
 | |
| from .quant_base import QuantConfigBase, QuantMethodBase
 | |
| 
 | |
| 
 | |
| class BlockWiseFP8Config(QuantConfigBase):
 | |
|     """
 | |
|     block wise quantization config, only support fp8 quant and only supports loading weights in BF16 format.
 | |
|     After loading the weights, it will automatically compute quantization sparsity and dynamically perform
 | |
|     per-token quantization of activations during inference.
 | |
|     """
 | |
| 
 | |
|     def __init__(self, weight_block_size: list = [-1, -1]) -> None:
 | |
|         super().__init__()
 | |
|         self.weight_block_size = weight_block_size
 | |
|         self.quant_max_bound = 448
 | |
|         self.quant_min_bound = -448
 | |
|         self.quant_round_type = 1
 | |
|         self.use_deep_gemm = bool(envs.FD_USE_DEEP_GEMM)
 | |
| 
 | |
|     def name(self) -> str:
 | |
|         return "block_wise_fp8"
 | |
| 
 | |
|     @classmethod
 | |
|     def from_config(cls, config: dict) -> "BlockWiseFP8Config":
 | |
|         weight_block_size = config.get("weight_block_size", [128, 128])
 | |
|         return cls(weight_block_size)
 | |
| 
 | |
|     def get_quant_method(self, layer) -> Optional[QuantMethodBase]:
 | |
|         """
 | |
|         Get quantization method.
 | |
|         """
 | |
|         if isinstance(layer, FusedMoE):
 | |
|             if self.use_deep_gemm:
 | |
|                 from fastdeploy.model_executor.layers.moe.fused_moe_deepgemm_backend import (
 | |
|                     DeepGemmFusedMoeMethod,
 | |
|                 )
 | |
| 
 | |
|                 return DeepGemmFusedMoeMethod(self)
 | |
|             else:
 | |
|                 from fastdeploy.model_executor.layers.moe.fused_moe_triton_backend import (
 | |
|                     BlockWiseFP8MoEMethod,
 | |
|                 )
 | |
|             return BlockWiseFP8MoEMethod(self)
 | |
|         else:
 | |
|             return BlockWiseFP8LinearMethod(self)
 | |
| 
 | |
| 
 | |
| class BlockWiseFP8LinearMethod(QuantMethodBase):
 | |
|     """
 | |
|     block wise quantization method for linear
 | |
|     """
 | |
| 
 | |
|     def __init__(
 | |
|         self,
 | |
|         quant_config: BlockWiseFP8Config,
 | |
|     ) -> None:
 | |
|         super().__init__()
 | |
|         self.quant_config = quant_config
 | |
| 
 | |
|     def create_weights(self, layer, **extra_weight_attrs):
 | |
|         layer.weight_shape.reverse()
 | |
|         layer.weight_dtype = "float8_e4m3fn"
 | |
|         layer.weight = layer.create_parameter(
 | |
|             shape=layer.weight_shape,
 | |
|             dtype=layer.weight_dtype,
 | |
|             is_bias=False,
 | |
|             default_initializer=paddle.nn.initializer.Constant(0),
 | |
|         )
 | |
| 
 | |
|         layer.weight_scale = layer.create_parameter(
 | |
|             shape=[
 | |
|                 (layer.output_size + self.quant_config.weight_block_size[0] - 1)
 | |
|                 // self.quant_config.weight_block_size[0],
 | |
|                 (layer.input_size + self.quant_config.weight_block_size[1] - 1)
 | |
|                 // self.quant_config.weight_block_size[1],
 | |
|             ],
 | |
|             dtype="float32",
 | |
|             is_bias=False,
 | |
|         )
 | |
| 
 | |
|     def process_loaded_weights(self, layer, weights) -> None:
 | |
|         weight_tensor = weights.transpose([1, 0])
 | |
|         quanted_weight_tensor, weight_block_scale_tensor = per_block_cast_to_fp8(weight_tensor)
 | |
|         layer.weight.copy_(quanted_weight_tensor, False)
 | |
|         layer.weight_scale.set_value(weight_block_scale_tensor)
 | |
| 
 | |
|     def process_prequanted_weights(self, layer, state_dict):
 | |
|         """
 | |
|         process_prequanted_weights
 | |
|         """
 | |
|         quant_weight = get_tensor(state_dict.pop(layer.weight_key))
 | |
|         weight_scale = get_tensor(state_dict.pop(layer.weight_scale_key))
 | |
| 
 | |
|         quant_weight = quant_weight.transpose([1, 0]).contiguous()
 | |
|         layer.weight.copy_(quant_weight.view("float8_e4m3fn"), False)
 | |
| 
 | |
|         weight_scale = weight_scale.transpose([1, 0])
 | |
|         layer.weight_scale.set_value(weight_scale)
 | |
| 
 | |
|     def apply(self, layer, x):
 | |
|         x, x_scale_tensor = fastdeploy.model_executor.ops.gpu.per_token_quant_padding(
 | |
|             x, self.quant_config.weight_block_size[0]
 | |
|         )
 | |
|         linear_out = paddle.empty((x.shape[0], layer.output_size), dtype=paddle.bfloat16)
 | |
|         from fastdeploy.model_executor.ops.gpu import deep_gemm
 | |
| 
 | |
|         deep_gemm.gemm_fp8_fp8_bf16_nt(
 | |
|             (x, x_scale_tensor),
 | |
|             (layer.weight, layer.weight_scale),
 | |
|             linear_out,
 | |
|         )
 | |
|         if layer.with_bias:
 | |
|             linear_out = paddle.add(linear_out, layer.bias)
 | |
|         return linear_out
 | 
