mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-12-24 13:28:13 +08:00
571 lines
22 KiB
Python
571 lines
22 KiB
Python
"""
|
|
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
|
|
import importlib
|
|
import importlib.util
|
|
import sys
|
|
import types
|
|
import unittest
|
|
from pathlib import Path
|
|
from types import SimpleNamespace
|
|
from unittest import mock
|
|
|
|
import numpy as np
|
|
|
|
|
|
class DummyTokenizer:
|
|
bos_token = "<s>"
|
|
cls_token = "<cls>"
|
|
sep_token = "</s>"
|
|
eos_token = "</eos>"
|
|
mask_token = "<mask>"
|
|
chat_template = "dummy"
|
|
|
|
def __init__(self):
|
|
self.pad_token_id = 1
|
|
self.eos_token_id = 2
|
|
self.eos_token = 2
|
|
self.vocab_size = 256
|
|
self.bos_token_id = self._convert_token_to_id(self.bos_token)
|
|
self.cls_token_id = self._convert_token_to_id(self.cls_token)
|
|
self.sep_token_id = self._convert_token_to_id(self.sep_token)
|
|
self.mask_token_id = self._convert_token_to_id(self.mask_token)
|
|
|
|
def _convert_token_to_id(self, token):
|
|
return len(str(token))
|
|
|
|
def __call__(self, text, **kwargs):
|
|
if isinstance(text, list):
|
|
values = [self._value(item) for item in text]
|
|
else:
|
|
values = [self._value(text)]
|
|
max_length = kwargs.get("max_length")
|
|
if max_length is not None:
|
|
values = values[:max_length]
|
|
return {"input_ids": np.array([values], dtype=np.int64)}
|
|
|
|
def _value(self, item):
|
|
if isinstance(item, str):
|
|
return len(item)
|
|
return int(item)
|
|
|
|
def tokenize(self, text):
|
|
if isinstance(text, str):
|
|
return [text]
|
|
return [str(text)]
|
|
|
|
def convert_tokens_to_ids(self, tokens):
|
|
return [self._value(token) for token in tokens]
|
|
|
|
def decode(self, token_ids, **kwargs):
|
|
return " ".join(str(t) for t in token_ids)
|
|
|
|
def decode_token(self, token_ids, prefix_offset, read_offset):
|
|
start = read_offset
|
|
delta_tokens = token_ids[start:]
|
|
delta = "".join(str(t) for t in delta_tokens)
|
|
prefix_offset += len(token_ids)
|
|
read_offset += len(delta_tokens)
|
|
return delta, prefix_offset, read_offset
|
|
|
|
def batch_decode(self, batch, **kwargs):
|
|
return [self.decode(seq) for seq in batch]
|
|
|
|
def apply_chat_template(self, request, **kwargs):
|
|
if isinstance(request, dict):
|
|
system = request.get("system")
|
|
messages = request.get("messages", [])
|
|
else:
|
|
system = getattr(request, "system", None)
|
|
messages = getattr(request, "messages", [])
|
|
parts = [system] if system else []
|
|
parts.extend(msg.get("content", "") for msg in messages)
|
|
return " ".join(part for part in parts if part)
|
|
|
|
|
|
class DummyLlamaTokenizer(DummyTokenizer):
|
|
pass
|
|
|
|
|
|
class DummyAutoTokenizer:
|
|
@classmethod
|
|
def from_pretrained(cls, *args, **kwargs):
|
|
return DummyTokenizer()
|
|
|
|
|
|
class DummyHFTokenizer:
|
|
@classmethod
|
|
def from_pretrained(cls, *args, **kwargs):
|
|
return DummyTokenizer()
|
|
|
|
|
|
def _create_dummy_modules():
|
|
"""Create all dummy modules needed for testing fastdeploy.input.text_processor."""
|
|
repo_root = Path(__file__).resolve().parents[2]
|
|
|
|
dummy_logger = SimpleNamespace(
|
|
info=lambda *args, **kwargs: None,
|
|
warning=lambda *args, **kwargs: None,
|
|
debug=lambda *args, **kwargs: None,
|
|
)
|
|
|
|
utils_module = types.ModuleType("fastdeploy.utils")
|
|
utils_module.data_processor_logger = dummy_logger
|
|
|
|
envs_module = types.ModuleType("fastdeploy.envs")
|
|
envs_module.FD_USE_HF_TOKENIZER = False
|
|
|
|
generation_module = types.ModuleType("paddleformers.generation")
|
|
|
|
class DummyGenerationConfig:
|
|
def __init__(self):
|
|
self.top_p = 0.8
|
|
self.temperature = 0.9
|
|
self.repetition_penalty = 1.1
|
|
self.frequency_penalty = 0.2
|
|
self.presence_penalty = 0.1
|
|
|
|
@classmethod
|
|
def from_pretrained(cls, *args, **kwargs):
|
|
return cls()
|
|
|
|
generation_module.GenerationConfig = DummyGenerationConfig
|
|
|
|
transformers_module = types.ModuleType("paddleformers.transformers")
|
|
transformers_module.AutoTokenizer = DummyAutoTokenizer
|
|
transformers_module.LlamaTokenizer = DummyLlamaTokenizer
|
|
transformers_module.Llama3Tokenizer = DummyLlamaTokenizer
|
|
|
|
hf_transformers_module = types.ModuleType("transformers")
|
|
hf_transformers_module.AutoTokenizer = DummyHFTokenizer
|
|
|
|
llm_utils_module = types.ModuleType("paddleformers.trl.llm_utils")
|
|
llm_utils_module.get_eos_token_id = lambda tokenizer, config: [tokenizer.eos_token_id]
|
|
|
|
fastdeploy_module = types.ModuleType("fastdeploy")
|
|
fastdeploy_module.__path__ = [str(repo_root / "fastdeploy")]
|
|
fastdeploy_module.utils = utils_module
|
|
fastdeploy_module.envs = envs_module
|
|
|
|
return {
|
|
"fastdeploy": fastdeploy_module,
|
|
"fastdeploy.utils": utils_module,
|
|
"fastdeploy.envs": envs_module,
|
|
"paddleformers.generation": generation_module,
|
|
"paddleformers.transformers": transformers_module,
|
|
"transformers": hf_transformers_module,
|
|
"paddleformers.trl.llm_utils": llm_utils_module,
|
|
}
|
|
|
|
|
|
def _import_text_processor(use_hf_tokenizer=False):
|
|
modules = _create_dummy_modules()
|
|
|
|
modules["fastdeploy.envs"].FD_USE_HF_TOKENIZER = use_hf_tokenizer
|
|
|
|
previous_modules = {}
|
|
for name, module in modules.items():
|
|
previous_modules[name] = sys.modules.get(name)
|
|
sys.modules[name] = module
|
|
|
|
try:
|
|
text_processor_module = importlib.import_module("fastdeploy.input.text_processor")
|
|
importlib.reload(text_processor_module)
|
|
except Exception:
|
|
for name, original in previous_modules.items():
|
|
if original is None:
|
|
sys.modules.pop(name, None)
|
|
else:
|
|
sys.modules[name] = original
|
|
raise
|
|
|
|
def cleanup():
|
|
sys.modules.pop("fastdeploy.input.text_processor", None)
|
|
for name, original in previous_modules.items():
|
|
if original is None:
|
|
sys.modules.pop(name, None)
|
|
else:
|
|
sys.modules[name] = original
|
|
|
|
return text_processor_module, cleanup
|
|
|
|
|
|
class DummyRequest:
|
|
def __init__(self, **kwargs):
|
|
self.request_id = kwargs.get("request_id", "req")
|
|
self.prompt = kwargs.get("prompt")
|
|
self.prompt_token_ids = kwargs.get("prompt_token_ids")
|
|
self.messages = kwargs.get("messages")
|
|
self.eos_token_ids = kwargs.get("eos_token_ids")
|
|
self.chat_template = kwargs.get("chat_template")
|
|
self.enable_thinking = kwargs.get("enable_thinking")
|
|
self.history = kwargs.get("history")
|
|
self.tools = kwargs.get("tools")
|
|
self.system = kwargs.get("system")
|
|
self.sampling_params = SimpleNamespace(
|
|
top_p=kwargs.get("top_p"),
|
|
temperature=kwargs.get("temperature"),
|
|
repetition_penalty=kwargs.get("repetition_penalty"),
|
|
frequency_penalty=kwargs.get("frequency_penalty"),
|
|
presence_penalty=kwargs.get("presence_penalty"),
|
|
stop=kwargs.get("stop"),
|
|
stop_token_ids=kwargs.get("stop_token_ids"),
|
|
stop_seqs_len=kwargs.get("stop_seqs_len"),
|
|
bad_words=kwargs.get("bad_words"),
|
|
bad_words_token_ids=kwargs.get("bad_words_token_ids"),
|
|
max_tokens=kwargs.get("max_tokens"),
|
|
)
|
|
|
|
def get(self, key, default=None):
|
|
if hasattr(self, key) and getattr(self, key) is not None:
|
|
return getattr(self, key)
|
|
return getattr(self.sampling_params, key, default)
|
|
|
|
def set(self, key, value):
|
|
if hasattr(self.sampling_params, key):
|
|
setattr(self.sampling_params, key, value)
|
|
else:
|
|
setattr(self, key, value)
|
|
|
|
def to_dict(self):
|
|
return {
|
|
"request_id": self.request_id,
|
|
"messages": self.messages,
|
|
"prompt": self.prompt,
|
|
"system": self.system,
|
|
"history": self.history,
|
|
"tools": self.tools,
|
|
"chat_template": self.chat_template,
|
|
"enable_thinking": self.enable_thinking,
|
|
}
|
|
|
|
def __getitem__(self, key):
|
|
return self.get(key)
|
|
|
|
def __setitem__(self, key, value):
|
|
self.set(key, value)
|
|
|
|
|
|
class DataProcessorTestCase(unittest.TestCase):
|
|
@staticmethod
|
|
def create_dummy_reasoning(tokenizer, reasoning_content="think"):
|
|
class DummyReasoning:
|
|
def __init__(self, tokenizer):
|
|
self.tokenizer = tokenizer
|
|
|
|
def extract_reasoning_content(self, full_text, response_dict):
|
|
return reasoning_content, f"{full_text}!"
|
|
|
|
return DummyReasoning(tokenizer)
|
|
|
|
@staticmethod
|
|
def create_dummy_tool_parser(tokenizer, content="tool-text"):
|
|
class DummyToolParser:
|
|
def __init__(self, tokenizer):
|
|
self.tokenizer = tokenizer
|
|
|
|
def extract_tool_calls(self, full_text, response_dict):
|
|
return SimpleNamespace(tools_called=True, tool_calls=["tool"], content=content)
|
|
|
|
return DummyToolParser
|
|
|
|
def setUp(self):
|
|
module, cleanup = _import_text_processor()
|
|
self.text_processor_module = module
|
|
self.addCleanup(cleanup)
|
|
self.processor = self.text_processor_module.DataProcessor("stub-model")
|
|
|
|
def test_base_data_processor_contract(self):
|
|
text_processor_module = self.text_processor_module
|
|
|
|
class MinimalProcessor(text_processor_module.BaseDataProcessor):
|
|
def __init__(self):
|
|
self.generation_config = SimpleNamespace(
|
|
top_p=0.5,
|
|
temperature=0.6,
|
|
repetition_penalty=1.1,
|
|
frequency_penalty=0.2,
|
|
presence_penalty=0.3,
|
|
)
|
|
super().__init__()
|
|
|
|
def _load_tokenizer(self):
|
|
return DummyTokenizer()
|
|
|
|
def process_request(self, request, **kwargs):
|
|
return super().process_request(request, **kwargs)
|
|
|
|
def process_response(self, response_dict):
|
|
return super().process_response(response_dict)
|
|
|
|
processor = MinimalProcessor()
|
|
defaults = processor._apply_default_parameters({})
|
|
self.assertAlmostEqual(defaults["top_p"], 0.5)
|
|
with self.assertRaises(NotImplementedError):
|
|
processor.process_request({}, max_model_len=None)
|
|
with self.assertRaises(NotImplementedError):
|
|
processor.process_response({})
|
|
with self.assertRaises(NotImplementedError):
|
|
processor.text2ids("text")
|
|
with self.assertRaises(NotImplementedError):
|
|
processor.messages2ids([])
|
|
with self.assertRaises(NotImplementedError):
|
|
processor.ids2tokens([1], "task")
|
|
|
|
def test_process_request_dict_prompt_defaults(self):
|
|
request = {"prompt": "hi", "temperature": 0, "top_p": 0, "stop": ["stop"]}
|
|
processed = self.processor.process_request_dict(request, max_model_len=5)
|
|
|
|
self.assertEqual(processed["prompt_token_ids"], [2])
|
|
self.assertEqual(processed["stop_token_ids"], [[4]])
|
|
self.assertEqual(processed["stop_seqs_len"], [1])
|
|
self.assertEqual(processed["temperature"], 1)
|
|
self.assertAlmostEqual(processed["top_p"], 1e-5)
|
|
self.assertEqual(processed["max_tokens"], 4)
|
|
|
|
def test_process_request_dict_messages_template(self):
|
|
request = {
|
|
"request_id": "chat",
|
|
"messages": [{"role": "user", "content": "hello"}],
|
|
"chat_template_kwargs": {"system": "system prompt"},
|
|
}
|
|
processed = self.processor.process_request_dict(request, max_model_len=6)
|
|
|
|
self.assertEqual(processed["prompt_token_ids"], [len("system prompt hello")])
|
|
self.assertEqual(processed["system"], "system prompt")
|
|
self.assertTrue(processed["enable_thinking"])
|
|
self.assertEqual(processed["prompt_tokens"], "system prompt hello")
|
|
|
|
def test_process_request_object_handles_sequences(self):
|
|
request = DummyRequest(
|
|
prompt=[1, 2, 3, 4, 5, 6],
|
|
stop=["stop"],
|
|
bad_words=["zz"],
|
|
temperature=0,
|
|
top_p=0,
|
|
)
|
|
processed = self.processor.process_request(request, max_model_len=5)
|
|
|
|
self.assertEqual(processed.prompt_token_ids, [1, 2, 3, 4])
|
|
self.assertEqual(processed.sampling_params.max_tokens, 1)
|
|
self.assertEqual(processed.sampling_params.stop_token_ids, [[4]])
|
|
self.assertEqual(set(processed.sampling_params.bad_words_token_ids), {2, 3})
|
|
self.assertEqual(processed.sampling_params.temperature, 1)
|
|
self.assertAlmostEqual(processed.sampling_params.top_p, 1e-5)
|
|
|
|
def test_process_request_requires_prompt_or_messages(self):
|
|
request = DummyRequest(prompt=None, messages=None, prompt_token_ids=None)
|
|
with self.assertRaisesRegex(ValueError, "should have `input_ids`, `text` or `messages`"):
|
|
self.processor.process_request(request, max_model_len=5)
|
|
|
|
def test_process_request_dict_rejects_bad_kwargs(self):
|
|
request = {
|
|
"messages": [{"role": "user", "content": "hi"}],
|
|
"chat_template_kwargs": "invalid",
|
|
}
|
|
with self.assertRaisesRegex(ValueError, "chat_template_kwargs must be a dict"):
|
|
self.processor.process_request_dict(request)
|
|
|
|
def test_ids2tokens_and_clear_request_status(self):
|
|
delta, _, _ = self.processor.ids2tokens([3], "task-1")
|
|
self.assertEqual(delta, "3")
|
|
delta, _, _ = self.processor.ids2tokens([4], "task-1")
|
|
self.assertEqual(delta, "4")
|
|
|
|
combined = self.processor.clear_request_status("task-1")
|
|
self.assertEqual(combined, "34")
|
|
self.assertNotIn("task-1", self.processor.decode_status)
|
|
|
|
def test_clear_request_status_hf_branch(self):
|
|
module, cleanup = _import_text_processor(use_hf_tokenizer=True)
|
|
self.addCleanup(cleanup)
|
|
processor = module.DataProcessor("stub-model")
|
|
processor.decode_status = {"task": [[], [], "transcript"]}
|
|
|
|
self.assertEqual(processor.clear_request_status("task"), "transcript")
|
|
self.assertNotIn("task", processor.decode_status)
|
|
|
|
def test_data_processor_init_handles_missing_generation_config(self):
|
|
with mock.patch.object(
|
|
self.text_processor_module.GenerationConfig,
|
|
"from_pretrained",
|
|
side_effect=OSError("missing"),
|
|
):
|
|
processor = self.text_processor_module.DataProcessor("stub-model")
|
|
self.assertIsNone(processor.generation_config)
|
|
|
|
def test_process_response_with_reasoning_and_tools(self):
|
|
processor = self.processor
|
|
|
|
processor.reasoning_parser = self.create_dummy_reasoning(processor.tokenizer)
|
|
processor.tool_parser_obj = self.create_dummy_tool_parser(processor.tokenizer, content="tool-only")
|
|
|
|
response = SimpleNamespace(
|
|
request_id="resp",
|
|
outputs=SimpleNamespace(token_ids=[1, processor.tokenizer.eos_token_id]),
|
|
)
|
|
|
|
processed = processor.process_response(response)
|
|
self.assertEqual(processed.outputs.text, "tool-only")
|
|
self.assertEqual(processed.outputs.reasoning_content, "think")
|
|
self.assertEqual(processed.outputs.tool_calls, ["tool"])
|
|
|
|
def test_process_response_streaming_clears_state(self):
|
|
processor = self.processor
|
|
req_id = "stream"
|
|
processor.decode_status[req_id] = [0, 0, [], ""]
|
|
response = {"finished": True, "request_id": req_id, "outputs": {"token_ids": [7]}}
|
|
|
|
result = processor.process_response_dict_streaming(response, enable_thinking=False)
|
|
self.assertEqual(result["outputs"]["text"], "7")
|
|
self.assertNotIn(req_id, processor.decode_status)
|
|
|
|
def test_process_response_dict_normal_with_reasoning(self):
|
|
processor = self.processor
|
|
|
|
processor.reasoning_parser = self.create_dummy_reasoning(processor.tokenizer, reasoning_content="because")
|
|
processor.tool_parser_obj = self.create_dummy_tool_parser(processor.tokenizer, content="tool-text")
|
|
|
|
response = {
|
|
"finished": True,
|
|
"request_id": "normal",
|
|
"outputs": {"token_ids": [7, processor.tokenizer.eos_token_id]},
|
|
}
|
|
|
|
result = processor.process_response_dict_normal(response, enable_thinking=True)
|
|
self.assertEqual(result["outputs"]["completion_tokens"], "7")
|
|
self.assertEqual(result["outputs"]["text"], "tool-text")
|
|
self.assertEqual(result["outputs"]["reasoning_content"], "because")
|
|
self.assertEqual(result["outputs"]["reasoning_token_num"], 1)
|
|
|
|
def test_process_response_dict_dispatch(self):
|
|
processor = self.processor
|
|
calls = {}
|
|
|
|
def fake_stream(response_dict, **kwargs):
|
|
calls["stream"] = kwargs
|
|
return "stream"
|
|
|
|
def fake_normal(response_dict, **kwargs):
|
|
calls["normal"] = kwargs
|
|
return "normal"
|
|
|
|
original_stream = processor.process_response_dict_streaming
|
|
original_normal = processor.process_response_dict_normal
|
|
processor.process_response_dict_streaming = fake_stream
|
|
processor.process_response_dict_normal = fake_normal
|
|
self.addCleanup(lambda: setattr(processor, "process_response_dict_streaming", original_stream))
|
|
self.addCleanup(lambda: setattr(processor, "process_response_dict_normal", original_normal))
|
|
|
|
response = {"outputs": {}, "finished": False, "request_id": "req"}
|
|
self.assertEqual(processor.process_response_dict(response), "stream")
|
|
self.assertTrue(calls["stream"]["enable_thinking"])
|
|
self.assertEqual(
|
|
processor.process_response_dict(response, stream=False, enable_thinking=None),
|
|
"normal",
|
|
)
|
|
self.assertTrue(calls["normal"]["enable_thinking"])
|
|
|
|
def test_update_stop_seq_excludes_eos(self):
|
|
stop_seqs, stop_len = self.processor.update_stop_seq(["stop", self.processor.tokenizer.eos_token_id])
|
|
self.assertEqual(stop_seqs, [[4]])
|
|
self.assertEqual(stop_len, [1])
|
|
|
|
def test_pad_batch_data_left_padding(self):
|
|
padded, lengths = self.processor.pad_batch_data(
|
|
[[1], [2, 3]],
|
|
pad_id=-1,
|
|
return_seq_len=True,
|
|
return_array=False,
|
|
pad_style="left",
|
|
)
|
|
self.assertEqual(padded, [[-1, 1], [2, 3]])
|
|
self.assertEqual(lengths, [1, 2])
|
|
|
|
def test_pad_batch_data_empty_returns_array(self):
|
|
padded, lengths = self.processor.pad_batch_data([], return_seq_len=True)
|
|
self.assertEqual(padded.shape, (1, 0))
|
|
self.assertEqual(lengths.shape, (0,))
|
|
|
|
def test_get_pad_id_prefers_eos_when_missing(self):
|
|
processor = self.text_processor_module.DataProcessor("stub-model")
|
|
llama_tokenizer = DummyLlamaTokenizer()
|
|
llama_tokenizer.pad_token_id = None
|
|
llama_tokenizer.eos_token = 99
|
|
processor.tokenizer = llama_tokenizer
|
|
|
|
self.assertEqual(processor.get_pad_id(), 99)
|
|
|
|
def test_load_tokenizer_hf_branch(self):
|
|
module, cleanup = _import_text_processor(use_hf_tokenizer=True)
|
|
self.addCleanup(cleanup)
|
|
processor = module.DataProcessor("stub-model")
|
|
self.assertIsInstance(processor.tokenizer, DummyTokenizer)
|
|
|
|
def test_text2ids_hf_branch(self):
|
|
module, cleanup = _import_text_processor(use_hf_tokenizer=True)
|
|
self.addCleanup(cleanup)
|
|
processor = module.DataProcessor("stub-model")
|
|
ids = processor.text2ids("hi", max_model_len=5)
|
|
self.assertEqual(ids.tolist(), [2, 0, 0, 0, 0][: len(ids)])
|
|
|
|
def test_process_logprob_response(self):
|
|
self.assertEqual(self.processor.process_logprob_response([1, 2]), "1 2")
|
|
|
|
def test_process_request_dict_uses_existing_ids(self):
|
|
request = {"prompt_token_ids": [1, 2, 3], "max_tokens": 5}
|
|
processed = self.processor.process_request_dict(request, max_model_len=6)
|
|
self.assertEqual(processed["prompt_token_ids"], [1, 2, 3])
|
|
self.assertEqual(processed["max_tokens"], 5)
|
|
|
|
def test_process_request_dict_requires_chat_template(self):
|
|
original_template = self.processor.tokenizer.chat_template
|
|
self.processor.tokenizer.chat_template = None
|
|
self.addCleanup(lambda: setattr(self.processor.tokenizer, "chat_template", original_template))
|
|
with self.assertRaisesRegex(ValueError, "chat_template"):
|
|
self.processor.process_request_dict({"messages": [{"role": "user", "content": "hi"}]})
|
|
|
|
def test_update_bad_words_with_warnings(self):
|
|
processor = self.processor
|
|
|
|
def custom_tokenize(text):
|
|
base = text.strip()
|
|
if base == "combo":
|
|
return ["co", "mbo"]
|
|
if base == "oversize":
|
|
return [base]
|
|
return [base]
|
|
|
|
def custom_convert(tokens):
|
|
if tokens == ["co", "mbo"]:
|
|
return [1, 2]
|
|
if tokens == ["oversize"]:
|
|
return [processor.tokenizer.vocab_size + 1]
|
|
return [len(tokens[0])]
|
|
|
|
original_tokenize = processor.tokenizer.tokenize
|
|
original_convert = processor.tokenizer.convert_tokens_to_ids
|
|
processor.tokenizer.tokenize = custom_tokenize
|
|
processor.tokenizer.convert_tokens_to_ids = custom_convert
|
|
self.addCleanup(lambda: setattr(processor.tokenizer, "tokenize", original_tokenize))
|
|
self.addCleanup(lambda: setattr(processor.tokenizer, "convert_tokens_to_ids", original_convert))
|
|
|
|
self.assertEqual(processor.update_bad_words(["combo", "oversize"], []), [])
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|