Files
FastDeploy/examples/vision/classification/paddleclas
yunyaoXYY a231c9e7f3 [Quantization] Update quantized model deployment examples and update readme. (#377)
* Add PaddleOCR Support

* Add PaddleOCR Support

* Add PaddleOCRv3 Support

* Add PaddleOCRv3 Support

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Add PaddleOCRv3 Support

* Add PaddleOCRv3 Supports

* Add PaddleOCRv3 Suport

* Fix Rec diff

* Remove useless functions

* Remove useless comments

* Add PaddleOCRv2 Support

* Add PaddleOCRv3 & PaddleOCRv2 Support

* remove useless parameters

* Add utils of sorting det boxes

* Fix code naming convention

* Fix code naming convention

* Fix code naming convention

* Fix bug in the Classify process

* Imporve OCR Readme

* Fix diff in Cls model

* Update Model Download Link in Readme

* Fix diff in PPOCRv2

* Improve OCR readme

* Imporve OCR readme

* Improve OCR readme

* Improve OCR readme

* Imporve OCR readme

* Improve OCR readme

* Fix conflict

* Add readme for OCRResult

* Improve OCR readme

* Add OCRResult readme

* Improve OCR readme

* Improve OCR readme

* Add Model Quantization Demo

* Fix Model Quantization Readme

* Fix Model Quantization Readme

* Add the function to do PTQ quantization

* Improve quant tools readme

* Improve quant tool readme

* Improve quant tool readme

* Add PaddleInference-GPU for OCR Rec model

* Add QAT method to fastdeploy-quantization tool

* Remove examples/slim for now

* Move configs folder

* Add Quantization Support for Classification Model

* Imporve ways of importing preprocess

* Upload YOLO Benchmark on readme

* Upload YOLO Benchmark on readme

* Upload YOLO Benchmark on readme

* Improve Quantization configs and readme

* Add support for multi-inputs model

* Add backends and params file for YOLOv7

* Add quantized model deployment support for YOLO series

* Fix YOLOv5 quantize readme

* Fix YOLO quantize readme

* Fix YOLO quantize readme

* Improve quantize YOLO readme

* Improve quantize YOLO readme

* Improve quantize YOLO readme

* Improve quantize YOLO readme

* Improve quantize YOLO readme

* Fix bug, change Fronted to ModelFormat

* Change Fronted to ModelFormat

* Add examples to deploy quantized paddleclas models

* Fix readme

* Add quantize Readme

* Add quantize Readme

* Add quantize Readme

* Modify readme of quantization tools

* Modify readme of quantization tools

* Improve quantization tools readme

* Improve quantization readme

* Improve PaddleClas quantized model deployment  readme

* Add PPYOLOE-l quantized deployment examples

* Improve quantization tools readme

* Improve Quantize Readme

* Fix conflicts

* Fix conflicts

* improve readme

* Improve quantization tools and readme

* Improve quantization tools and readme

* Add quantized deployment examples for PaddleSeg model

* Fix cpp readme

* Fix memory leak of reader_wrapper function

* Fix model file name in PaddleClas quantization examples

* Update Runtime and E2E benchmark

* Update Runtime and E2E benchmark

* Rename quantization tools to auto compression tools

* Remove PPYOLOE data when deployed on MKLDNN

* Fix readme

* Support PPYOLOE with OR without NMS and update readme

* Update Readme

* Update configs and readme

* Update configs and readme

* Add Paddle-TensorRT backend in quantized model deploy examples

* Support PPYOLOE+ series
2022-11-02 20:29:29 +08:00
..
2022-10-20 17:38:11 +08:00

PaddleClas 模型部署

模型版本说明

目前FastDeploy支持如下模型的部署

准备PaddleClas部署模型

PaddleClas模型导出请参考其文档说明模型导出

注意PaddleClas导出的模型仅包含inference.pdmodelinference.pdiparams两个文件,但为了满足部署的需求,同时也需准备其提供的通用inference_cls.yaml文件FastDeploy会从yaml文件中获取模型在推理时需要的预处理信息开发者可直接下载此文件使用。但需根据自己的需求修改yaml文件中的配置参数具体可比照PaddleClas模型训练config中的infer部分的配置信息进行修改。

下载预训练模型

为了方便开发者的测试下面提供了PaddleClas导出的部分模型含inference_cls.yaml文件开发者可直接下载使用。

模型 参数文件大小 输入Shape Top1 Top5
PPLCNet_x1_0 12MB 224x224 71.32% 90.03%
PPLCNetV2_base 26MB 224x224 77.04% 93.27%
EfficientNetB7 255MB 600x600 84.3% 96.9%
EfficientNetB0_small 18MB 224x224 75.8% 75.8%
GhostNet_x1_3_ssld 29MB 224x224 75.7% 92.5%
GhostNet_x0_5 10MB 224x224 66.8% 86.9%
MobileNetV1_x0_25 1.9MB 224x224 51.4% 75.5%
MobileNetV1_ssld 17MB 224x224 77.9% 93.9%
MobileNetV2_x0_25 5.9MB 224x224 53.2% 76.5%
MobileNetV2_ssld 14MB 224x224 76.74% 93.39%
MobileNetV3_small_x0_35_ssld 6.4MB 224x224 55.55% 77.71%
MobileNetV3_large_x1_0_ssld 22MB 224x224 78.96% 94.48%
ShuffleNetV2_x0_25 2.4MB 224x224 49.9% 73.79%
ShuffleNetV2_x2_0 29MB 224x224 73.15% 91.2%
SqueezeNet1_1 4.8MB 224x224 60.1% 81.9%
InceptionV3 92MB 299x299 79.14% 94.59%
PPHGNet_tiny_ssld 57MB 224x224 81.95% 96.12%
PPHGNet_base_ssld 274MB 224x224 85.0% 97.35%
ResNet50_vd 98MB 224x224 79.12% 94.44%

详细部署文档