mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 17:17:14 +08:00

* Add notes for tensors * Optimize some apis * move some warnings * Support build with Paddle2ONNX * Add protobuf support * Fix compile on mac * add clearn package script * Add paddle2onnx code * remove submodule * Add onnx ocde * remove softlink * add onnx code * fix error * Add cmake file * fix patchelf * update paddle2onnx * Delete .gitmodules --------- Co-authored-by: PaddleCI <paddle_ci@example.com> Co-authored-by: pangyoki <pangyoki@126.com> Co-authored-by: jiangjiajun <jiangjiajun@baidu.lcom>
114 lines
3.7 KiB
C++
114 lines
3.7 KiB
C++
/*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
// ATTENTION: The code in this file is highly EXPERIMENTAL.
|
|
// Adventurous users should note that the APIs will probably change.
|
|
|
|
#pragma once
|
|
|
|
#include "onnx/defs/tensor_proto_util.h"
|
|
#include "onnxoptimizer/pass.h"
|
|
|
|
namespace ONNX_NAMESPACE {
|
|
namespace optimization {
|
|
|
|
const std::unordered_set<NodeKind> reduction_operators{
|
|
kReduceL1, kReduceL2, kReduceLogSum, kReduceLogSumExp, kReduceMax,
|
|
kReduceMean, kReduceMin, kReduceProd, kReduceSum, kReduceSumSquare};
|
|
|
|
struct FuseConsecutiveReduceUnsqueeze final : public PredicateBasedPass {
|
|
explicit FuseConsecutiveReduceUnsqueeze()
|
|
: PredicateBasedPass(PassType::Fuse, PassEfficiency::Complete,
|
|
PassOptimizationType::Compute) {}
|
|
|
|
std::string getPassName() const override {
|
|
return "fuse_consecutive_reduce_unsqueeze";
|
|
}
|
|
static bool IsAxesAnAttr(const Graph &graph, const Node *n) {
|
|
int opset_version = getOpsetVersion(graph);
|
|
int opset_threshold;
|
|
if (n->kind() == kUnsqueeze || n->kind() == kReduceSum) {
|
|
opset_threshold = 12;
|
|
return opset_version <= opset_threshold && opset_version != 0;
|
|
}
|
|
return true;
|
|
}
|
|
static bool getAxes(const Node *n, Graph &graph, std::vector<int64_t> &axes) {
|
|
if (IsAxesAnAttr(graph, n)) {
|
|
if (!n->hasAttribute(kaxes)) {
|
|
return false;
|
|
}
|
|
axes = n->is(kaxes);
|
|
} else {
|
|
if (n->inputs().size() < 2) {
|
|
return false;
|
|
}
|
|
auto axes_value = n->inputs()[1];
|
|
if ((axes_value->node()->kind() != kConstant &&
|
|
axes_value->node()->kind() != kParam)) {
|
|
return false;
|
|
}
|
|
Tensor axes_t;
|
|
if (axes_value->node()->kind() == kConstant) {
|
|
axes_t = axes_value->node()->t(kvalue);
|
|
} else {
|
|
const auto axes_i = graph.getInitializer(axes_value->uniqueName());
|
|
axes_t = *axes_i;
|
|
}
|
|
axes = ParseData<int64_t>(&axes_t);
|
|
}
|
|
return true;
|
|
}
|
|
bool patternMatchPredicate(Node *node) override {
|
|
// check that the current node is of type Unsqueeze and has defined axes
|
|
bool cur_node_check = node->kind() == kUnsqueeze;
|
|
if (cur_node_check) {
|
|
Node *prev_node = node->inputs()[0]->node();
|
|
// check that the previous node a reduction operator and has defined
|
|
// axes/keepdims
|
|
bool reduction_node_check = reduction_operators.find(prev_node->kind()) !=
|
|
reduction_operators.end() &&
|
|
prev_node->hasAttribute(kkeepdims);
|
|
if (reduction_node_check) {
|
|
// insure that keepdims is set to false currently
|
|
return prev_node->i(kkeepdims) == 0;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
bool runTransform(Node *node, Graph &graph,
|
|
NodeDestroyType &destroy_current) override {
|
|
Node *prev_node = node->inputs()[0]->node();
|
|
std::vector<int64_t> axes;
|
|
bool success = getAxes(node, graph, axes);
|
|
if (!success) {
|
|
return false;
|
|
}
|
|
std::vector<int64_t> prev_axes;
|
|
success = getAxes(prev_node, graph, prev_axes);
|
|
if (!success) {
|
|
return false;
|
|
}
|
|
if (axes != prev_axes) {
|
|
return false;
|
|
}
|
|
Node *reduction_op = node->inputs()[0]->node();
|
|
// set keepdims flag to be true
|
|
reduction_op->i_(kkeepdims, 1);
|
|
// remove unnecessary unsqueeze
|
|
reduction_op->output()->setSizes(node->output()->sizes());
|
|
reduction_op->output()->setElemType(node->output()->elemType());
|
|
const bool replacing_success =
|
|
tryReplacingAllUsesWith(node->output(), node->inputs()[0]);
|
|
if (!replacing_success) {
|
|
return false;
|
|
}
|
|
destroy_current = NodeDestroyType::DestroyOne;
|
|
return true;
|
|
}
|
|
};
|
|
|
|
} // namespace optimization
|
|
} // namespace ONNX_NAMESPACE
|