mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 17:17:14 +08:00
105 lines
3.4 KiB
C++
105 lines
3.4 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2010 Manuel Yguel <manuel.yguel@gmail.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#include <iostream>
|
|
#include <unsupported/Eigen/Polynomials>
|
|
#include "main.h"
|
|
|
|
using namespace std;
|
|
|
|
namespace Eigen {
|
|
namespace internal {
|
|
template <int Size>
|
|
struct increment_if_fixed_size {
|
|
enum { ret = (Size == Dynamic) ? Dynamic : Size + 1 };
|
|
};
|
|
}
|
|
}
|
|
|
|
template <typename _Scalar, int _Deg>
|
|
void realRoots_to_monicPolynomial_test(int deg) {
|
|
typedef internal::increment_if_fixed_size<_Deg> Dim;
|
|
typedef Matrix<_Scalar, Dim::ret, 1> PolynomialType;
|
|
typedef Matrix<_Scalar, _Deg, 1> EvalRootsType;
|
|
|
|
PolynomialType pols(deg + 1);
|
|
EvalRootsType roots = EvalRootsType::Random(deg);
|
|
roots_to_monicPolynomial(roots, pols);
|
|
|
|
EvalRootsType evr(deg);
|
|
for (int i = 0; i < roots.size(); ++i) {
|
|
evr[i] = std::abs(poly_eval(pols, roots[i]));
|
|
}
|
|
|
|
bool evalToZero = evr.isZero(test_precision<_Scalar>());
|
|
if (!evalToZero) {
|
|
cerr << evr.transpose() << endl;
|
|
}
|
|
VERIFY(evalToZero);
|
|
}
|
|
|
|
template <typename _Scalar>
|
|
void realRoots_to_monicPolynomial_scalar() {
|
|
CALL_SUBTEST_2((realRoots_to_monicPolynomial_test<_Scalar, 2>(2)));
|
|
CALL_SUBTEST_3((realRoots_to_monicPolynomial_test<_Scalar, 3>(3)));
|
|
CALL_SUBTEST_4((realRoots_to_monicPolynomial_test<_Scalar, 4>(4)));
|
|
CALL_SUBTEST_5((realRoots_to_monicPolynomial_test<_Scalar, 5>(5)));
|
|
CALL_SUBTEST_6((realRoots_to_monicPolynomial_test<_Scalar, 6>(6)));
|
|
CALL_SUBTEST_7((realRoots_to_monicPolynomial_test<_Scalar, 7>(7)));
|
|
CALL_SUBTEST_8((realRoots_to_monicPolynomial_test<_Scalar, 17>(17)));
|
|
|
|
CALL_SUBTEST_9((realRoots_to_monicPolynomial_test<_Scalar, Dynamic>(
|
|
internal::random<int>(18, 26))));
|
|
}
|
|
|
|
template <typename _Scalar, int _Deg>
|
|
void CauchyBounds(int deg) {
|
|
typedef internal::increment_if_fixed_size<_Deg> Dim;
|
|
typedef Matrix<_Scalar, Dim::ret, 1> PolynomialType;
|
|
typedef Matrix<_Scalar, _Deg, 1> EvalRootsType;
|
|
|
|
PolynomialType pols(deg + 1);
|
|
EvalRootsType roots = EvalRootsType::Random(deg);
|
|
roots_to_monicPolynomial(roots, pols);
|
|
_Scalar M = cauchy_max_bound(pols);
|
|
_Scalar m = cauchy_min_bound(pols);
|
|
_Scalar Max = roots.array().abs().maxCoeff();
|
|
_Scalar min = roots.array().abs().minCoeff();
|
|
bool eval = (M >= Max) && (m <= min);
|
|
if (!eval) {
|
|
cerr << "Roots: " << roots << endl;
|
|
cerr << "Bounds: (" << m << ", " << M << ")" << endl;
|
|
cerr << "Min,Max: (" << min << ", " << Max << ")" << endl;
|
|
}
|
|
VERIFY(eval);
|
|
}
|
|
|
|
template <typename _Scalar>
|
|
void CauchyBounds_scalar() {
|
|
CALL_SUBTEST_2((CauchyBounds<_Scalar, 2>(2)));
|
|
CALL_SUBTEST_3((CauchyBounds<_Scalar, 3>(3)));
|
|
CALL_SUBTEST_4((CauchyBounds<_Scalar, 4>(4)));
|
|
CALL_SUBTEST_5((CauchyBounds<_Scalar, 5>(5)));
|
|
CALL_SUBTEST_6((CauchyBounds<_Scalar, 6>(6)));
|
|
CALL_SUBTEST_7((CauchyBounds<_Scalar, 7>(7)));
|
|
CALL_SUBTEST_8((CauchyBounds<_Scalar, 17>(17)));
|
|
|
|
CALL_SUBTEST_9(
|
|
(CauchyBounds<_Scalar, Dynamic>(internal::random<int>(18, 26))));
|
|
}
|
|
|
|
EIGEN_DECLARE_TEST(polynomialutils) {
|
|
for (int i = 0; i < g_repeat; i++) {
|
|
realRoots_to_monicPolynomial_scalar<double>();
|
|
realRoots_to_monicPolynomial_scalar<float>();
|
|
CauchyBounds_scalar<double>();
|
|
CauchyBounds_scalar<float>();
|
|
}
|
|
}
|