Files
FastDeploy/third_party/eigen/test/nullary.cpp
Jack Zhou 355382ad63 Move eigen to third party (#282)
* remove useless statement

* Add eigen to third_party dir

* remove reducdant lines
2022-09-26 19:24:02 +08:00

374 lines
14 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2010-2011 Jitse Niesen <jitse@maths.leeds.ac.uk>
// Copyright (C) 2016 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
template <typename MatrixType>
bool equalsIdentity(const MatrixType& A) {
typedef typename MatrixType::Scalar Scalar;
Scalar zero = static_cast<Scalar>(0);
bool offDiagOK = true;
for (Index i = 0; i < A.rows(); ++i) {
for (Index j = i + 1; j < A.cols(); ++j) {
offDiagOK = offDiagOK && (A(i, j) == zero);
}
}
for (Index i = 0; i < A.rows(); ++i) {
for (Index j = 0; j < (std::min)(i, A.cols()); ++j) {
offDiagOK = offDiagOK && (A(i, j) == zero);
}
}
bool diagOK = (A.diagonal().array() == 1).all();
return offDiagOK && diagOK;
}
template <typename VectorType>
void check_extremity_accuracy(const VectorType& v,
const typename VectorType::Scalar& low,
const typename VectorType::Scalar& high) {
typedef typename VectorType::Scalar Scalar;
typedef typename VectorType::RealScalar RealScalar;
RealScalar prec = internal::is_same<RealScalar, float>::value
? NumTraits<RealScalar>::dummy_precision() * 10
: NumTraits<RealScalar>::dummy_precision() / 10;
Index size = v.size();
if (size < 20) return;
for (int i = 0; i < size; ++i) {
if (i < 5 || i > size - 6) {
Scalar ref = (low * RealScalar(size - i - 1)) / RealScalar(size - 1) +
(high * RealScalar(i)) / RealScalar(size - 1);
if (std::abs(ref) > 1) {
if (!internal::isApprox(v(i), ref, prec))
std::cout << v(i) << " != " << ref
<< " ; relative error: " << std::abs((v(i) - ref) / ref)
<< " ; required precision: " << prec
<< " ; range: " << low << "," << high << " ; i: " << i
<< "\n";
VERIFY(internal::isApprox(
v(i), (low * RealScalar(size - i - 1)) / RealScalar(size - 1) +
(high * RealScalar(i)) / RealScalar(size - 1),
prec));
}
}
}
}
template <typename VectorType>
void testVectorType(const VectorType& base) {
typedef typename VectorType::Scalar Scalar;
typedef typename VectorType::RealScalar RealScalar;
const Index size = base.size();
Scalar high = internal::random<Scalar>(-500, 500);
Scalar low = (size == 1 ? high : internal::random<Scalar>(-500, 500));
if (numext::real(low) > numext::real(high)) std::swap(low, high);
// check low==high
if (internal::random<float>(0.f, 1.f) < 0.05f) low = high;
// check abs(low) >> abs(high)
else if (size > 2 && std::numeric_limits<RealScalar>::max_exponent10 > 0 &&
internal::random<float>(0.f, 1.f) < 0.1f)
low = -internal::random<Scalar>(1, 2) *
RealScalar(
std::pow(RealScalar(10),
std::numeric_limits<RealScalar>::max_exponent10 / 2));
const Scalar step = ((size == 1) ? 1 : (high - low) / RealScalar(size - 1));
// check whether the result yields what we expect it to do
VectorType m(base);
m.setLinSpaced(size, low, high);
if (!NumTraits<Scalar>::IsInteger) {
VectorType n(size);
for (int i = 0; i < size; ++i) n(i) = low + RealScalar(i) * step;
VERIFY_IS_APPROX(m, n);
CALL_SUBTEST(check_extremity_accuracy(m, low, high));
}
RealScalar range_length = numext::real(high - low);
if ((!NumTraits<Scalar>::IsInteger) ||
(range_length >= size && (Index(range_length) % (size - 1)) == 0) ||
(Index(range_length + 1) < size &&
(size % Index(range_length + 1)) == 0)) {
VectorType n(size);
if ((!NumTraits<Scalar>::IsInteger) || (range_length >= size))
for (int i = 0; i < size; ++i)
n(i) = size == 1
? low
: (low + ((high - low) * Scalar(i)) / RealScalar(size - 1));
else
for (int i = 0; i < size; ++i)
n(i) = size == 1 ? low
: low + Scalar((double(range_length + 1) * double(i)) /
double(size));
VERIFY_IS_APPROX(m, n);
// random access version
m = VectorType::LinSpaced(size, low, high);
VERIFY_IS_APPROX(m, n);
VERIFY(internal::isApprox(m(m.size() - 1), high));
VERIFY(size == 1 || internal::isApprox(m(0), low));
VERIFY_IS_EQUAL(m(m.size() - 1), high);
if (!NumTraits<Scalar>::IsInteger)
CALL_SUBTEST(check_extremity_accuracy(m, low, high));
}
VERIFY(numext::real(m(m.size() - 1)) <= numext::real(high));
VERIFY((m.array().real() <= numext::real(high)).all());
VERIFY((m.array().real() >= numext::real(low)).all());
VERIFY(numext::real(m(m.size() - 1)) >= numext::real(low));
if (size >= 1) {
VERIFY(internal::isApprox(m(0), low));
VERIFY_IS_EQUAL(m(0), low);
}
// check whether everything works with row and col major vectors
Matrix<Scalar, Dynamic, 1> row_vector(size);
Matrix<Scalar, 1, Dynamic> col_vector(size);
row_vector.setLinSpaced(size, low, high);
col_vector.setLinSpaced(size, low, high);
// when using the extended precision (e.g., FPU) the relative error might
// exceed 1 bit
// when computing the squared sum in isApprox, thus the 2x factor.
VERIFY(row_vector.isApprox(col_vector.transpose(),
RealScalar(2) * NumTraits<Scalar>::epsilon()));
Matrix<Scalar, Dynamic, 1> size_changer(size + 50);
size_changer.setLinSpaced(size, low, high);
VERIFY(size_changer.size() == size);
typedef Matrix<Scalar, 1, 1> ScalarMatrix;
ScalarMatrix scalar;
scalar.setLinSpaced(1, low, high);
VERIFY_IS_APPROX(scalar, ScalarMatrix::Constant(high));
VERIFY_IS_APPROX(ScalarMatrix::LinSpaced(1, low, high),
ScalarMatrix::Constant(high));
// regression test for bug 526 (linear vectorized transversal)
if (size > 1 && (!NumTraits<Scalar>::IsInteger)) {
m.tail(size - 1).setLinSpaced(low, high);
VERIFY_IS_APPROX(m(size - 1), high);
}
// regression test for bug 1383 (LinSpaced with empty size/range)
{
Index n0 = VectorType::SizeAtCompileTime == Dynamic
? 0
: VectorType::SizeAtCompileTime;
low = internal::random<Scalar>();
m = VectorType::LinSpaced(n0, low, low - RealScalar(1));
VERIFY(m.size() == n0);
if (VectorType::SizeAtCompileTime == Dynamic) {
VERIFY_IS_EQUAL(VectorType::LinSpaced(n0, 0, Scalar(n0 - 1)).sum(),
Scalar(0));
VERIFY_IS_EQUAL(VectorType::LinSpaced(n0, low, low - RealScalar(1)).sum(),
Scalar(0));
}
m.setLinSpaced(n0, 0, Scalar(n0 - 1));
VERIFY(m.size() == n0);
m.setLinSpaced(n0, low, low - RealScalar(1));
VERIFY(m.size() == n0);
// empty range only:
VERIFY_IS_APPROX(VectorType::LinSpaced(size, low, low),
VectorType::Constant(size, low));
m.setLinSpaced(size, low, low);
VERIFY_IS_APPROX(m, VectorType::Constant(size, low));
if (NumTraits<Scalar>::IsInteger) {
VERIFY_IS_APPROX(
VectorType::LinSpaced(size, low, low + Scalar(size - 1)),
VectorType::LinSpaced(size, low + Scalar(size - 1), low).reverse());
if (VectorType::SizeAtCompileTime == Dynamic) {
// Check negative multiplicator path:
for (Index k = 1; k < 5; ++k)
VERIFY_IS_APPROX(
VectorType::LinSpaced(size, low, low + Scalar((size - 1) * k)),
VectorType::LinSpaced(size, low + Scalar((size - 1) * k), low)
.reverse());
// Check negative divisor path:
for (Index k = 1; k < 5; ++k)
VERIFY_IS_APPROX(
VectorType::LinSpaced(size * k, low, low + Scalar(size - 1)),
VectorType::LinSpaced(size * k, low + Scalar(size - 1), low)
.reverse());
}
}
}
// test setUnit()
if (m.size() > 0) {
for (Index k = 0; k < 10; ++k) {
Index i = internal::random<Index>(0, m.size() - 1);
m.setUnit(i);
VERIFY_IS_APPROX(m, VectorType::Unit(m.size(), i));
}
if (VectorType::SizeAtCompileTime == Dynamic) {
Index i = internal::random<Index>(0, 2 * m.size() - 1);
m.setUnit(2 * m.size(), i);
VERIFY_IS_APPROX(m, VectorType::Unit(m.size(), i));
}
}
}
template <typename MatrixType>
void testMatrixType(const MatrixType& m) {
using std::abs;
const Index rows = m.rows();
const Index cols = m.cols();
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
Scalar s1;
do {
s1 = internal::random<Scalar>();
} while (abs(s1) < RealScalar(1e-5) && (!NumTraits<Scalar>::IsInteger));
MatrixType A;
A.setIdentity(rows, cols);
VERIFY(equalsIdentity(A));
VERIFY(equalsIdentity(MatrixType::Identity(rows, cols)));
A = MatrixType::Constant(rows, cols, s1);
Index i = internal::random<Index>(0, rows - 1);
Index j = internal::random<Index>(0, cols - 1);
VERIFY_IS_APPROX(MatrixType::Constant(rows, cols, s1)(i, j), s1);
VERIFY_IS_APPROX(MatrixType::Constant(rows, cols, s1).coeff(i, j), s1);
VERIFY_IS_APPROX(A(i, j), s1);
}
template <int>
void bug79() {
// Assignment of a RowVectorXd to a MatrixXd (regression test for bug #79).
VERIFY((MatrixXd(RowVectorXd::LinSpaced(3, 0, 1)) - RowVector3d(0, 0.5, 1))
.norm() < std::numeric_limits<double>::epsilon());
}
template <int>
void bug1630() {
Array4d x4 = Array4d::LinSpaced(0.0, 1.0);
Array3d x3(Array4d::LinSpaced(0.0, 1.0).head(3));
VERIFY_IS_APPROX(x4.head(3), x3);
}
template <int>
void nullary_overflow() {
// Check possible overflow issue
int n = 60000;
ArrayXi a1(n), a2(n);
a1.setLinSpaced(n, 0, n - 1);
for (int i = 0; i < n; ++i) a2(i) = i;
VERIFY_IS_APPROX(a1, a2);
}
template <int>
void nullary_internal_logic() {
// check some internal logic
VERIFY((internal::has_nullary_operator<
internal::scalar_constant_op<double> >::value));
VERIFY((!internal::has_unary_operator<
internal::scalar_constant_op<double> >::value));
VERIFY((!internal::has_binary_operator<
internal::scalar_constant_op<double> >::value));
VERIFY((internal::functor_has_linear_access<
internal::scalar_constant_op<double> >::ret));
VERIFY((!internal::has_nullary_operator<
internal::scalar_identity_op<double> >::value));
VERIFY((!internal::has_unary_operator<
internal::scalar_identity_op<double> >::value));
VERIFY((internal::has_binary_operator<
internal::scalar_identity_op<double> >::value));
VERIFY((!internal::functor_has_linear_access<
internal::scalar_identity_op<double> >::ret));
VERIFY(
(!internal::has_nullary_operator<internal::linspaced_op<float> >::value));
VERIFY((internal::has_unary_operator<internal::linspaced_op<float> >::value));
VERIFY(
(!internal::has_binary_operator<internal::linspaced_op<float> >::value));
VERIFY((internal::functor_has_linear_access<
internal::linspaced_op<float> >::ret));
// Regression unit test for a weird MSVC bug.
// Search "nullary_wrapper_workaround_msvc" in CoreEvaluators.h for the
// details.
// See also traits<Ref>::match.
{
MatrixXf A = MatrixXf::Random(3, 3);
Ref<const MatrixXf> R = 2.0 * A;
VERIFY_IS_APPROX(R, A + A);
Ref<const MatrixXf> R1 = MatrixXf::Random(3, 3) + A;
VectorXi V = VectorXi::Random(3);
Ref<const VectorXi> R2 = VectorXi::LinSpaced(3, 1, 3) + V;
VERIFY_IS_APPROX(R2, V + Vector3i(1, 2, 3));
VERIFY((internal::has_nullary_operator<
internal::scalar_constant_op<float> >::value));
VERIFY((!internal::has_unary_operator<
internal::scalar_constant_op<float> >::value));
VERIFY((!internal::has_binary_operator<
internal::scalar_constant_op<float> >::value));
VERIFY((internal::functor_has_linear_access<
internal::scalar_constant_op<float> >::ret));
VERIFY(
(!internal::has_nullary_operator<internal::linspaced_op<int> >::value));
VERIFY((internal::has_unary_operator<internal::linspaced_op<int> >::value));
VERIFY(
(!internal::has_binary_operator<internal::linspaced_op<int> >::value));
VERIFY((internal::functor_has_linear_access<
internal::linspaced_op<int> >::ret));
}
}
EIGEN_DECLARE_TEST(nullary) {
CALL_SUBTEST_1(testMatrixType(Matrix2d()));
CALL_SUBTEST_2(testMatrixType(
MatrixXcf(internal::random<int>(1, 300), internal::random<int>(1, 300))));
CALL_SUBTEST_3(testMatrixType(
MatrixXf(internal::random<int>(1, 300), internal::random<int>(1, 300))));
for (int i = 0; i < g_repeat * 10; i++) {
CALL_SUBTEST_3(testVectorType(VectorXcd(internal::random<int>(1, 30000))));
CALL_SUBTEST_4(testVectorType(VectorXd(internal::random<int>(1, 30000))));
CALL_SUBTEST_5(testVectorType(Vector4d())); // regression test for bug 232
CALL_SUBTEST_6(testVectorType(Vector3d()));
CALL_SUBTEST_7(testVectorType(VectorXf(internal::random<int>(1, 30000))));
CALL_SUBTEST_8(testVectorType(Vector3f()));
CALL_SUBTEST_8(testVectorType(Vector4f()));
CALL_SUBTEST_8(testVectorType(Matrix<float, 8, 1>()));
CALL_SUBTEST_8(testVectorType(Matrix<float, 1, 1>()));
CALL_SUBTEST_9(testVectorType(VectorXi(internal::random<int>(1, 10))));
CALL_SUBTEST_9(testVectorType(VectorXi(internal::random<int>(9, 300))));
CALL_SUBTEST_9(testVectorType(Matrix<int, 1, 1>()));
}
CALL_SUBTEST_6(bug79<0>());
CALL_SUBTEST_6(bug1630<0>());
CALL_SUBTEST_9(nullary_overflow<0>());
CALL_SUBTEST_10(nullary_internal_logic<0>());
}