mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 09:07:10 +08:00
154 lines
5.6 KiB
C++
154 lines
5.6 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
// discard stack allocation as that too bypasses malloc
|
|
#define EIGEN_STACK_ALLOCATION_LIMIT 0
|
|
#define EIGEN_RUNTIME_NO_MALLOC
|
|
#include <Eigen/SVD>
|
|
#include "main.h"
|
|
|
|
#define SVD_DEFAULT(M) JacobiSVD<M>
|
|
#define SVD_FOR_MIN_NORM(M) JacobiSVD<M, ColPivHouseholderQRPreconditioner>
|
|
#include "svd_common.h"
|
|
|
|
// Check all variants of JacobiSVD
|
|
template <typename MatrixType>
|
|
void jacobisvd(const MatrixType& a = MatrixType(), bool pickrandom = true) {
|
|
MatrixType m = a;
|
|
if (pickrandom) svd_fill_random(m);
|
|
|
|
CALL_SUBTEST((svd_test_all_computation_options<
|
|
JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner> >(
|
|
m, true))); // check full only
|
|
CALL_SUBTEST((svd_test_all_computation_options<
|
|
JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner> >(
|
|
m, false)));
|
|
CALL_SUBTEST(
|
|
(svd_test_all_computation_options<
|
|
JacobiSVD<MatrixType, HouseholderQRPreconditioner> >(m, false)));
|
|
if (m.rows() == m.cols())
|
|
CALL_SUBTEST((svd_test_all_computation_options<
|
|
JacobiSVD<MatrixType, NoQRPreconditioner> >(m, false)));
|
|
}
|
|
|
|
template <typename MatrixType>
|
|
void jacobisvd_verify_assert(const MatrixType& m) {
|
|
svd_verify_assert<JacobiSVD<MatrixType> >(m);
|
|
Index rows = m.rows();
|
|
Index cols = m.cols();
|
|
|
|
enum { ColsAtCompileTime = MatrixType::ColsAtCompileTime };
|
|
|
|
MatrixType a = MatrixType::Zero(rows, cols);
|
|
a.setZero();
|
|
|
|
if (ColsAtCompileTime == Dynamic) {
|
|
JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner> svd_fullqr;
|
|
VERIFY_RAISES_ASSERT(svd_fullqr.compute(a, ComputeFullU | ComputeThinV))
|
|
VERIFY_RAISES_ASSERT(svd_fullqr.compute(a, ComputeThinU | ComputeThinV))
|
|
VERIFY_RAISES_ASSERT(svd_fullqr.compute(a, ComputeThinU | ComputeFullV))
|
|
}
|
|
}
|
|
|
|
template <typename MatrixType>
|
|
void jacobisvd_method() {
|
|
enum { Size = MatrixType::RowsAtCompileTime };
|
|
typedef typename MatrixType::RealScalar RealScalar;
|
|
typedef Matrix<RealScalar, Size, 1> RealVecType;
|
|
MatrixType m = MatrixType::Identity();
|
|
VERIFY_IS_APPROX(m.jacobiSvd().singularValues(), RealVecType::Ones());
|
|
VERIFY_RAISES_ASSERT(m.jacobiSvd().matrixU());
|
|
VERIFY_RAISES_ASSERT(m.jacobiSvd().matrixV());
|
|
VERIFY_IS_APPROX(m.jacobiSvd(ComputeFullU | ComputeFullV).solve(m), m);
|
|
VERIFY_IS_APPROX(
|
|
m.jacobiSvd(ComputeFullU | ComputeFullV).transpose().solve(m), m);
|
|
VERIFY_IS_APPROX(m.jacobiSvd(ComputeFullU | ComputeFullV).adjoint().solve(m),
|
|
m);
|
|
}
|
|
|
|
namespace Foo {
|
|
// older compiler require a default constructor for Bar
|
|
// cf: https://stackoverflow.com/questions/7411515/
|
|
class Bar {
|
|
public:
|
|
Bar() {}
|
|
};
|
|
bool operator<(const Bar&, const Bar&) { return true; }
|
|
}
|
|
// regression test for a very strange MSVC issue for which simply
|
|
// including SVDBase.h messes up with std::max and custom scalar type
|
|
void msvc_workaround() {
|
|
const Foo::Bar a;
|
|
const Foo::Bar b;
|
|
std::max EIGEN_NOT_A_MACRO(a, b);
|
|
}
|
|
|
|
EIGEN_DECLARE_TEST(jacobisvd) {
|
|
CALL_SUBTEST_3((jacobisvd_verify_assert(Matrix3f())));
|
|
CALL_SUBTEST_4((jacobisvd_verify_assert(Matrix4d())));
|
|
CALL_SUBTEST_7((jacobisvd_verify_assert(MatrixXf(10, 12))));
|
|
CALL_SUBTEST_8((jacobisvd_verify_assert(MatrixXcd(7, 5))));
|
|
|
|
CALL_SUBTEST_11(svd_all_trivial_2x2(jacobisvd<Matrix2cd>));
|
|
CALL_SUBTEST_12(svd_all_trivial_2x2(jacobisvd<Matrix2d>));
|
|
|
|
for (int i = 0; i < g_repeat; i++) {
|
|
CALL_SUBTEST_3((jacobisvd<Matrix3f>()));
|
|
CALL_SUBTEST_4((jacobisvd<Matrix4d>()));
|
|
CALL_SUBTEST_5((jacobisvd<Matrix<float, 3, 5> >()));
|
|
CALL_SUBTEST_6((jacobisvd<Matrix<double, Dynamic, 2> >(
|
|
Matrix<double, Dynamic, 2>(10, 2))));
|
|
|
|
int r = internal::random<int>(1, 30), c = internal::random<int>(1, 30);
|
|
|
|
TEST_SET_BUT_UNUSED_VARIABLE(r)
|
|
TEST_SET_BUT_UNUSED_VARIABLE(c)
|
|
|
|
CALL_SUBTEST_10((jacobisvd<MatrixXd>(MatrixXd(r, c))));
|
|
CALL_SUBTEST_7((jacobisvd<MatrixXf>(MatrixXf(r, c))));
|
|
CALL_SUBTEST_8((jacobisvd<MatrixXcd>(MatrixXcd(r, c))));
|
|
(void)r;
|
|
(void)c;
|
|
|
|
// Test on inf/nan matrix
|
|
CALL_SUBTEST_7((svd_inf_nan<JacobiSVD<MatrixXf>, MatrixXf>()));
|
|
CALL_SUBTEST_10((svd_inf_nan<JacobiSVD<MatrixXd>, MatrixXd>()));
|
|
|
|
// bug1395 test compile-time vectors as input
|
|
CALL_SUBTEST_13((jacobisvd_verify_assert(Matrix<double, 6, 1>())));
|
|
CALL_SUBTEST_13((jacobisvd_verify_assert(Matrix<double, 1, 6>())));
|
|
CALL_SUBTEST_13((jacobisvd_verify_assert(Matrix<double, Dynamic, 1>(r))));
|
|
CALL_SUBTEST_13((jacobisvd_verify_assert(Matrix<double, 1, Dynamic>(c))));
|
|
}
|
|
|
|
CALL_SUBTEST_7((jacobisvd<MatrixXf>(MatrixXf(
|
|
internal::random<int>(EIGEN_TEST_MAX_SIZE / 4, EIGEN_TEST_MAX_SIZE / 2),
|
|
internal::random<int>(EIGEN_TEST_MAX_SIZE / 4,
|
|
EIGEN_TEST_MAX_SIZE / 2)))));
|
|
CALL_SUBTEST_8((jacobisvd<MatrixXcd>(MatrixXcd(
|
|
internal::random<int>(EIGEN_TEST_MAX_SIZE / 4, EIGEN_TEST_MAX_SIZE / 3),
|
|
internal::random<int>(EIGEN_TEST_MAX_SIZE / 4,
|
|
EIGEN_TEST_MAX_SIZE / 3)))));
|
|
|
|
// test matrixbase method
|
|
CALL_SUBTEST_1((jacobisvd_method<Matrix2cd>()));
|
|
CALL_SUBTEST_3((jacobisvd_method<Matrix3f>()));
|
|
|
|
// Test problem size constructors
|
|
CALL_SUBTEST_7(JacobiSVD<MatrixXf>(10, 10));
|
|
|
|
// Check that preallocation avoids subsequent mallocs
|
|
CALL_SUBTEST_9(svd_preallocate<void>());
|
|
|
|
CALL_SUBTEST_2(svd_underoverflow<void>());
|
|
|
|
msvc_workaround();
|
|
}
|