Files
FastDeploy/third_party/eigen/test/householder.cpp
Jack Zhou 355382ad63 Move eigen to third party (#282)
* remove useless statement

* Add eigen to third_party dir

* remove reducdant lines
2022-09-26 19:24:02 +08:00

173 lines
6.5 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include <Eigen/QR>
#include "main.h"
template <typename MatrixType>
void householder(const MatrixType& m) {
static bool even = true;
even = !even;
/* this test covers the following files:
Householder.h
*/
Index rows = m.rows();
Index cols = m.cols();
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
typedef Matrix<
Scalar, internal::decrement_size<MatrixType::RowsAtCompileTime>::ret, 1>
EssentialVectorType;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime,
MatrixType::RowsAtCompileTime>
SquareMatrixType;
typedef Matrix<Scalar, Dynamic, MatrixType::ColsAtCompileTime>
HBlockMatrixType;
typedef Matrix<Scalar, Dynamic, 1> HCoeffsVectorType;
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime,
MatrixType::RowsAtCompileTime>
TMatrixType;
Matrix<Scalar, EIGEN_SIZE_MAX(MatrixType::RowsAtCompileTime,
MatrixType::ColsAtCompileTime),
1>
_tmp((std::max)(rows, cols));
Scalar* tmp = &_tmp.coeffRef(0, 0);
Scalar beta;
RealScalar alpha;
EssentialVectorType essential;
VectorType v1 = VectorType::Random(rows), v2;
v2 = v1;
v1.makeHouseholder(essential, beta, alpha);
v1.applyHouseholderOnTheLeft(essential, beta, tmp);
VERIFY_IS_APPROX(v1.norm(), v2.norm());
if (rows >= 2)
VERIFY_IS_MUCH_SMALLER_THAN(v1.tail(rows - 1).norm(), v1.norm());
v1 = VectorType::Random(rows);
v2 = v1;
v1.applyHouseholderOnTheLeft(essential, beta, tmp);
VERIFY_IS_APPROX(v1.norm(), v2.norm());
// reconstruct householder matrix:
SquareMatrixType id, H1, H2;
id.setIdentity(rows, rows);
H1 = H2 = id;
VectorType vv(rows);
vv << Scalar(1), essential;
H1.applyHouseholderOnTheLeft(essential, beta, tmp);
H2.applyHouseholderOnTheRight(essential, beta, tmp);
VERIFY_IS_APPROX(H1, H2);
VERIFY_IS_APPROX(H1, id - beta * vv * vv.adjoint());
MatrixType m1(rows, cols), m2(rows, cols);
v1 = VectorType::Random(rows);
if (even) v1.tail(rows - 1).setZero();
m1.colwise() = v1;
m2 = m1;
m1.col(0).makeHouseholder(essential, beta, alpha);
m1.applyHouseholderOnTheLeft(essential, beta, tmp);
VERIFY_IS_APPROX(m1.norm(), m2.norm());
if (rows >= 2)
VERIFY_IS_MUCH_SMALLER_THAN(m1.block(1, 0, rows - 1, cols).norm(),
m1.norm());
VERIFY_IS_MUCH_SMALLER_THAN(numext::imag(m1(0, 0)), numext::real(m1(0, 0)));
VERIFY_IS_APPROX(numext::real(m1(0, 0)), alpha);
v1 = VectorType::Random(rows);
if (even) v1.tail(rows - 1).setZero();
SquareMatrixType m3(rows, rows), m4(rows, rows);
m3.rowwise() = v1.transpose();
m4 = m3;
m3.row(0).makeHouseholder(essential, beta, alpha);
m3.applyHouseholderOnTheRight(essential.conjugate(), beta, tmp);
VERIFY_IS_APPROX(m3.norm(), m4.norm());
if (rows >= 2)
VERIFY_IS_MUCH_SMALLER_THAN(m3.block(0, 1, rows, rows - 1).norm(),
m3.norm());
VERIFY_IS_MUCH_SMALLER_THAN(numext::imag(m3(0, 0)), numext::real(m3(0, 0)));
VERIFY_IS_APPROX(numext::real(m3(0, 0)), alpha);
// test householder sequence on the left with a shift
Index shift = internal::random<Index>(0, std::max<Index>(rows - 2, 0));
Index brows = rows - shift;
m1.setRandom(rows, cols);
HBlockMatrixType hbm = m1.block(shift, 0, brows, cols);
HouseholderQR<HBlockMatrixType> qr(hbm);
m2 = m1;
m2.block(shift, 0, brows, cols) = qr.matrixQR();
HCoeffsVectorType hc = qr.hCoeffs().conjugate();
HouseholderSequence<MatrixType, HCoeffsVectorType> hseq(m2, hc);
hseq.setLength(hc.size()).setShift(shift);
VERIFY(hseq.length() == hc.size());
VERIFY(hseq.shift() == shift);
MatrixType m5 = m2;
m5.block(shift, 0, brows, cols)
.template triangularView<StrictlyLower>()
.setZero();
VERIFY_IS_APPROX(hseq * m5, m1); // test applying hseq directly
m3 = hseq;
VERIFY_IS_APPROX(
m3 * m5, m1); // test evaluating hseq to a dense matrix, then applying
SquareMatrixType hseq_mat = hseq;
SquareMatrixType hseq_mat_conj = hseq.conjugate();
SquareMatrixType hseq_mat_adj = hseq.adjoint();
SquareMatrixType hseq_mat_trans = hseq.transpose();
SquareMatrixType m6 = SquareMatrixType::Random(rows, rows);
VERIFY_IS_APPROX(hseq_mat.adjoint(), hseq_mat_adj);
VERIFY_IS_APPROX(hseq_mat.conjugate(), hseq_mat_conj);
VERIFY_IS_APPROX(hseq_mat.transpose(), hseq_mat_trans);
VERIFY_IS_APPROX(hseq * m6, hseq_mat * m6);
VERIFY_IS_APPROX(hseq.adjoint() * m6, hseq_mat_adj * m6);
VERIFY_IS_APPROX(hseq.conjugate() * m6, hseq_mat_conj * m6);
VERIFY_IS_APPROX(hseq.transpose() * m6, hseq_mat_trans * m6);
VERIFY_IS_APPROX(m6 * hseq, m6 * hseq_mat);
VERIFY_IS_APPROX(m6 * hseq.adjoint(), m6 * hseq_mat_adj);
VERIFY_IS_APPROX(m6 * hseq.conjugate(), m6 * hseq_mat_conj);
VERIFY_IS_APPROX(m6 * hseq.transpose(), m6 * hseq_mat_trans);
// test householder sequence on the right with a shift
TMatrixType tm2 = m2.transpose();
HouseholderSequence<TMatrixType, HCoeffsVectorType, OnTheRight> rhseq(tm2,
hc);
rhseq.setLength(hc.size()).setShift(shift);
VERIFY_IS_APPROX(rhseq * m5, m1); // test applying rhseq directly
m3 = rhseq;
VERIFY_IS_APPROX(
m3 * m5, m1); // test evaluating rhseq to a dense matrix, then applying
}
EIGEN_DECLARE_TEST(householder) {
for (int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1(householder(Matrix<double, 2, 2>()));
CALL_SUBTEST_2(householder(Matrix<float, 2, 3>()));
CALL_SUBTEST_3(householder(Matrix<double, 3, 5>()));
CALL_SUBTEST_4(householder(Matrix<float, 4, 4>()));
CALL_SUBTEST_5(
householder(MatrixXd(internal::random<int>(1, EIGEN_TEST_MAX_SIZE),
internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
CALL_SUBTEST_6(
householder(MatrixXcf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE),
internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
CALL_SUBTEST_7(
householder(MatrixXf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE),
internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
CALL_SUBTEST_8(householder(Matrix<double, 1, 1>()));
}
}