mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00
101 lines
4.1 KiB
Python
101 lines
4.1 KiB
Python
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||
#
|
||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# http://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
|
||
import fastdeploy as fd
|
||
import cv2
|
||
import os
|
||
import numpy as np
|
||
import runtime_config as rc
|
||
|
||
def test_keypointdetection_pptinypose():
|
||
pp_tinypose_model_url = "https://bj.bcebos.com/fastdeploy/tests/PP_TinyPose_256x192_test.tgz"
|
||
fd.download_and_decompress(pp_tinypose_model_url, "resources")
|
||
model_path = "./resources/PP_TinyPose_256x192_test"
|
||
# 配置runtime,加载模型
|
||
runtime_option = fd.RuntimeOption()
|
||
model_file = os.path.join(model_path, "model.pdmodel")
|
||
params_file = os.path.join(model_path, "model.pdiparams")
|
||
config_file = os.path.join(model_path, "infer_cfg.yml")
|
||
image_file = os.path.join(model_path, "hrnet_demo.jpg")
|
||
baseline_file = os.path.join(model_path, "baseline.npy")
|
||
model = fd.vision.keypointdetection.PPTinyPose(
|
||
model_file, params_file, config_file, runtime_option=rc.test_option)
|
||
|
||
# 预测图片关键点
|
||
im = cv2.imread(image_file)
|
||
result = model.predict(im)
|
||
result = np.concatenate(
|
||
(np.array(result.keypoints), np.array(result.scores)[:, np.newaxis]),
|
||
axis=1)
|
||
baseline = np.load(baseline_file)
|
||
diff = np.fabs(result - np.array(baseline))
|
||
thres = 1e-05
|
||
assert diff.max() < thres, "The diff is %f, which is bigger than %f" % (
|
||
diff.max(), thres)
|
||
print("No diff")
|
||
|
||
|
||
def test_keypointdetection_det_keypoint_unite():
|
||
det_keypoint_unite_model_url = "https://bj.bcebos.com/fastdeploy/tests/PicoDet_320x320_TinyPose_256x192_test.tgz"
|
||
fd.download_and_decompress(det_keypoint_unite_model_url, "resources")
|
||
model_path = "./resources/PicoDet_320x320_TinyPose_256x192_test"
|
||
# 配置runtime,加载模型
|
||
runtime_option = fd.RuntimeOption()
|
||
tinypose_model_file = os.path.join(
|
||
model_path, "PP_TinyPose_256x192_infer/model.pdmodel")
|
||
tinypose_params_file = os.path.join(
|
||
model_path, "PP_TinyPose_256x192_infer/model.pdiparams")
|
||
tinypose_config_file = os.path.join(
|
||
model_path, "PP_TinyPose_256x192_infer/infer_cfg.yml")
|
||
picodet_model_file = os.path.join(
|
||
model_path, "PP_PicoDet_V2_S_Pedestrian_320x320_infer/model.pdmodel")
|
||
picodet_params_file = os.path.join(
|
||
model_path, "PP_PicoDet_V2_S_Pedestrian_320x320_infer/model.pdiparams")
|
||
picodet_config_file = os.path.join(
|
||
model_path, "PP_PicoDet_V2_S_Pedestrian_320x320_infer/infer_cfg.yml")
|
||
image_file = os.path.join(model_path, "000000018491.jpg")
|
||
# image_file = os.path.join(model_path, "hrnet_demo.jpg")
|
||
|
||
baseline_file = os.path.join(model_path, "baseline.npy")
|
||
|
||
tinypose_model = fd.vision.keypointdetection.PPTinyPose(
|
||
tinypose_model_file,
|
||
tinypose_params_file,
|
||
tinypose_config_file,
|
||
runtime_option=runtime_option)
|
||
|
||
det_model = fd.vision.detection.PicoDet(
|
||
picodet_model_file,
|
||
picodet_params_file,
|
||
picodet_config_file,
|
||
runtime_option=rc.test_option)
|
||
|
||
# 预测图片关键点
|
||
im = cv2.imread(image_file)
|
||
pipeline = fd.pipeline.PPTinyPose(det_model, tinypose_model)
|
||
pipeline.detection_model_score_threshold = 0.5
|
||
result = pipeline.predict(im)
|
||
print(result)
|
||
result = np.concatenate(
|
||
(np.array(result.keypoints), np.array(result.scores)[:, np.newaxis]),
|
||
axis=1)
|
||
print(result)
|
||
np.save("resources/baseline.npy", result)
|
||
baseline = np.load(baseline_file)
|
||
diff = np.fabs(result - np.array(baseline))
|
||
thres = 1e-05
|
||
assert diff.max() < thres, "The diff is %f, which is bigger than %f" % (
|
||
diff.max(), thres)
|
||
print("No diff")
|