mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00

* add onnx_ort_runtime demo * rm in requirements * support batch eval * fixed MattingResults bug * move assignment for DetectionResult * integrated x2paddle * add model convert readme * update readme * re-lint * add processor api * Add MattingResult Free * change valid_cpu_backends order * add ppocr benchmark * mv bs from 64 to 32 * fixed quantize.md * fixed quantize bugs * Add Monitor for benchmark * update mem monitor * Set trt_max_batch_size default 1 * fixed ocr benchmark bug * support yolov5 in serving * Fixed yolov5 serving * Fixed postprocess * update yolov5 to 7.0 * add poros runtime demos * update readme * Support poros abi=1 * rm useless note * deal with comments * support pp_trt for ppseg * fixed symlink problem * Add is_mini_pad and stride for yolov5 * Add yolo series for paddle format * fixed bugs * fixed bug * support yolov5seg * fixed bug * refactor yolov5seg * fixed bug * mv Mask int32 to uint8 * add yolov5seg example * rm log info * fixed code style * add yolov5seg example in python * fixed dtype bug * update note * deal with comments * get sorted index * add yolov5seg test case * Add GPL-3.0 License * add round func * deal with comments * deal with commens Co-authored-by: Jason <jiangjiajun@baidu.com>
121 lines
4.8 KiB
Python
Executable File
121 lines
4.8 KiB
Python
Executable File
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import fastdeploy as fd
|
|
import copy
|
|
import cv2
|
|
import os
|
|
import pickle
|
|
import numpy as np
|
|
import runtime_config as rc
|
|
|
|
|
|
def test_detection_mask_rcnn():
|
|
model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/mask_rcnn_r50_1x_coco.tgz"
|
|
input_url1 = "https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg"
|
|
result_url = "https://bj.bcebos.com/fastdeploy/tests/data/mask_rcnn_baseline.pkl"
|
|
fd.download_and_decompress(model_url, "resources")
|
|
fd.download(input_url1, "resources")
|
|
fd.download(result_url, "resources")
|
|
model_path = "resources/mask_rcnn_r50_1x_coco"
|
|
|
|
model_file = os.path.join(model_path, "model.pdmodel")
|
|
params_file = os.path.join(model_path, "model.pdiparams")
|
|
config_file = os.path.join(model_path, "infer_cfg.yml")
|
|
model = fd.vision.detection.MaskRCNN(
|
|
model_file, params_file, config_file, runtime_option=rc.test_option)
|
|
|
|
# compare diff
|
|
im1 = cv2.imread("./resources/000000014439.jpg")
|
|
for i in range(2):
|
|
with open("resources/mask_rcnn_baseline.pkl", "rb") as f:
|
|
boxes, scores, label_ids = pickle.load(f)
|
|
result = model.predict(im1)
|
|
pred_boxes = np.array(result.boxes)
|
|
pred_scores = np.array(result.scores)
|
|
pred_label_ids = np.array(result.label_ids)
|
|
|
|
diff_boxes = np.fabs(boxes - pred_boxes)
|
|
diff_scores = np.fabs(scores - pred_scores)
|
|
diff_label_ids = np.fabs(label_ids - pred_label_ids)
|
|
|
|
print(diff_boxes.max(), diff_scores.max(), diff_label_ids.max())
|
|
|
|
score_threshold = 0.0
|
|
assert diff_boxes[scores > score_threshold].max(
|
|
) < 1e-01, "There's diff in boxes."
|
|
assert diff_scores[scores > score_threshold].max(
|
|
) < 1e-02, "There's diff in scores."
|
|
assert diff_label_ids[scores > score_threshold].max(
|
|
) < 1e-04, "There's diff in label_ids."
|
|
|
|
|
|
def test_detection_mask_rcnn1():
|
|
model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/mask_rcnn_r50_1x_coco.tgz"
|
|
input_url1 = "https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg"
|
|
result_url = "https://bj.bcebos.com/fastdeploy/tests/data/mask_rcnn_baseline.pkl"
|
|
fd.download_and_decompress(model_url, "resources")
|
|
fd.download(input_url1, "resources")
|
|
fd.download(result_url, "resources")
|
|
model_path = "resources/mask_rcnn_r50_1x_coco"
|
|
|
|
model_file = os.path.join(model_path, "model.pdmodel")
|
|
params_file = os.path.join(model_path, "model.pdiparams")
|
|
config_file = os.path.join(model_path, "infer_cfg.yml")
|
|
preprocessor = fd.vision.detection.PaddleDetPreprocessor(config_file)
|
|
postprocessor = fd.vision.detection.PaddleDetPostprocessor()
|
|
|
|
option = rc.test_option
|
|
option.set_model_path(model_file, params_file)
|
|
option.use_paddle_infer_backend()
|
|
runtime = fd.Runtime(option)
|
|
|
|
# compare diff
|
|
im1 = cv2.imread("./resources/000000014439.jpg")
|
|
for i in range(2):
|
|
im1 = cv2.imread("./resources/000000014439.jpg")
|
|
input_tensors = preprocessor.run([im1])
|
|
output_tensors = runtime.infer({
|
|
"image": input_tensors[0],
|
|
"scale_factor": input_tensors[1],
|
|
"im_shape": input_tensors[2]
|
|
})
|
|
results = postprocessor.run(output_tensors)
|
|
result = results[0]
|
|
|
|
with open("resources/mask_rcnn_baseline.pkl", "rb") as f:
|
|
boxes, scores, label_ids = pickle.load(f)
|
|
pred_boxes = np.array(result.boxes)
|
|
pred_scores = np.array(result.scores)
|
|
pred_label_ids = np.array(result.label_ids)
|
|
|
|
diff_boxes = np.fabs(boxes - pred_boxes)
|
|
diff_scores = np.fabs(scores - pred_scores)
|
|
diff_label_ids = np.fabs(label_ids - pred_label_ids)
|
|
|
|
print(diff_boxes.max(), diff_scores.max(), diff_label_ids.max())
|
|
|
|
score_threshold = 0.0
|
|
assert diff_boxes[scores > score_threshold].max(
|
|
) < 1e-01, "There's diff in boxes."
|
|
assert diff_scores[scores > score_threshold].max(
|
|
) < 1e-02, "There's diff in scores."
|
|
assert diff_label_ids[scores > score_threshold].max(
|
|
) < 1e-04, "There's diff in label_ids."
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_detection_mask_rcnn()
|
|
test_detection_mask_rcnn1()
|