mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00

* model done, CLA fix * remove letter_box and ConvertAndPermute, use resize hwc2chw and convert in preprocess * remove useless values in preprocess * remove useless values in preprocess * fix reviewed problem * fix reviewed problem pybind * fix reviewed problem pybind * postprocess fix * add test_fastestdet.py, coco_val2017_500 fixed done, ready to review * fix reviewed problem * python/.../fastestdet.py * fix infer.cc, preprocess, python/fastestdet.py * fix examples/python/infer.py
111 lines
4.2 KiB
Python
111 lines
4.2 KiB
Python
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from fastdeploy import ModelFormat
|
|
import fastdeploy as fd
|
|
import cv2
|
|
import os
|
|
import pickle
|
|
import numpy as np
|
|
import runtime_config as rc
|
|
|
|
|
|
def test_detection_fastestdet():
|
|
model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/FastestDet.onnx"
|
|
input_url1 = "https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg"
|
|
input_url2 = "https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000570688.jpg"
|
|
result_url1 = "https://bj.bcebos.com/paddlehub/fastdeploy/fastestdet_result1.pkl"
|
|
fd.download(model_url, "resources")
|
|
fd.download(input_url1, "resources")
|
|
fd.download(input_url2, "resources")
|
|
fd.download(result_url1, "resources")
|
|
|
|
model_file = "resources/FastestDet.onnx"
|
|
model = fd.vision.detection.FastestDet(
|
|
model_file, runtime_option=rc.test_option)
|
|
|
|
with open("resources/fastestdet_result1.pkl", "rb") as f:
|
|
expect1 = pickle.load(f)
|
|
|
|
# compare diff
|
|
im1 = cv2.imread("./resources/000000014439.jpg")
|
|
print(expect1)
|
|
for i in range(3):
|
|
# test single predict
|
|
result1 = model.predict(im1)
|
|
|
|
diff_boxes_1 = np.fabs(
|
|
np.array(result1.boxes) - np.array(expect1["boxes"]))
|
|
|
|
diff_label_1 = np.fabs(
|
|
np.array(result1.label_ids) - np.array(expect1["label_ids"]))
|
|
diff_scores_1 = np.fabs(
|
|
np.array(result1.scores) - np.array(expect1["scores"]))
|
|
|
|
print(diff_boxes_1.max(), diff_boxes_1.mean())
|
|
assert diff_boxes_1.max(
|
|
) < 1e-04, "There's difference in detection boxes 1."
|
|
assert diff_label_1.max(
|
|
) < 1e-04, "There's difference in detection label 1."
|
|
assert diff_scores_1.max(
|
|
) < 1e-05, "There's difference in detection score 1."
|
|
|
|
def test_detection_fastestdet_runtime():
|
|
model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/FastestDet.onnx"
|
|
input_url1 = "https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg"
|
|
result_url1 = "https://bj.bcebos.com/paddlehub/fastdeploy/fastestdet_result1.pkl"
|
|
fd.download(model_url, "resources")
|
|
fd.download(input_url1, "resources")
|
|
fd.download(result_url1, "resources")
|
|
|
|
model_file = "resources/FastestDet.onnx"
|
|
|
|
preprocessor = fd.vision.detection.FastestDetPreprocessor()
|
|
postprocessor = fd.vision.detection.FastestDetPostprocessor()
|
|
|
|
rc.test_option.set_model_path(model_file, model_format=ModelFormat.ONNX)
|
|
rc.test_option.use_openvino_backend()
|
|
runtime = fd.Runtime(rc.test_option)
|
|
|
|
with open("resources/fastestdet_result1.pkl", "rb") as f:
|
|
expect1 = pickle.load(f)
|
|
|
|
# compare diff
|
|
im1 = cv2.imread("./resources/000000014439.jpg")
|
|
|
|
for i in range(3):
|
|
# test runtime
|
|
input_tensors, ims_info = preprocessor.run([im1.copy()])
|
|
output_tensors = runtime.infer({"input.1": input_tensors[0]})
|
|
results = postprocessor.run(output_tensors, ims_info)
|
|
result1 = results[0]
|
|
|
|
diff_boxes_1 = np.fabs(
|
|
np.array(result1.boxes) - np.array(expect1["boxes"]))
|
|
diff_label_1 = np.fabs(
|
|
np.array(result1.label_ids) - np.array(expect1["label_ids"]))
|
|
diff_scores_1 = np.fabs(
|
|
np.array(result1.scores) - np.array(expect1["scores"]))
|
|
|
|
assert diff_boxes_1.max(
|
|
) < 1e-04, "There's difference in detection boxes 1."
|
|
assert diff_label_1.max(
|
|
) < 1e-04, "There's difference in detection label 1."
|
|
assert diff_scores_1.max(
|
|
) < 1e-05, "There's difference in detection score 1."
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_detection_fastestdet()
|
|
test_detection_fastestdet_runtime() |